• Title/Summary/Keyword: Hermitian manifold

Search Result 36, Processing Time 0.026 seconds

ALMOST HERMITIAN SUBMERSIONS WHOSE TOTAL MANIFOLDS ADMIT A RICCI SOLITON

  • Gunduzalp, Yilmaz
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.733-745
    • /
    • 2020
  • The object of the present paper is to study the almost Hermitian submersion from an almost Hermitian manifold admits a Ricci soliton. Where, we investigate any fibre of such a submersion is a Ricci soliton or Einstein. We also get necessary conditions for which the base manifold of an almost Hermitian submersion is a Ricci soliton or Einstein. Moreover, we obtain the harmonicity of an almost Hermitian submersion from a Ricci soliton to an almost Hermitian manifold.

THE CHERN SECTIONAL CURVATURE OF A HERMITIAN MANIFOLD

  • Pandeng Cao;Hongjun Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.897-906
    • /
    • 2024
  • On a Hermitian manifold, the Chern connection can induce a metric connection on the background Riemannian manifold. We call the sectional curvature of the metric connection induced by the Chern connection the Chern sectional curvature of this Hermitian manifold. First, we derive expression of the Chern sectional curvature in local complex coordinates. As an application, we find that a Hermitian metric is Kähler if the Riemann sectional curvature and the Chern sectional curvature coincide. As subsequent results, Ricci curvature and scalar curvature of the metric connection induced by the Chern connection are obtained.

PSEUDO-HERMITIAN MAGNETIC CURVES IN NORMAL ALMOST CONTACT METRIC 3-MANIFOLDS

  • Lee, Ji-Eun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1269-1281
    • /
    • 2020
  • In this article, we show that a pseudo-Hermitian magnetic curve in a normal almost contact metric 3-manifold equipped with the canonical affine connection ${\hat{\nabla}}^t$ is a slant helix with pseudo-Hermitian curvature ${\hat{\kappa}}={\mid}q{\mid}\;sin\;{\theta}$ and pseudo-Hermitian torsion ${\hat{\tau}}=q\;cos\;{\theta}$. Moreover, we prove that every pseudo-Hermitian magnetic curve in normal almost contact metric 3-manifolds except quasi-Sasakian 3-manifolds is a slant helix as a Riemannian geometric sense. On the other hand we will show that a pseudo-Hermitian magnetic curve γ in a quasi-Sasakian 3-manifold M is a slant curve with curvature κ = |(t - α) cos θ + q| sin θ and torsion τ = α + {(t - α) cos θ + q} cos θ. These curves are not helices, in general. Note that if the ambient space M is an α-Sasakian 3-manifold, then γ is a slant helix.

ON EINSTEIN HERMITIAN MANIFOLDS II

  • Kim, Jae-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.289-294
    • /
    • 2009
  • We show that on a Hermitian surface M, if M is weakly *-Einstein and has J-invariant Ricci tensor then M is Einstein, and vice versa. As a consequence, we obtain that a compact *-Einstein Hermitian surface with J-invariant Ricci tensor is $K{\ddot{a}}hler$. In contrast with the 4- dimensional case, we show that there exists a compact Einstein Hermitian (4n + 2)-dimensional manifold which is not weakly *-Einstein.

LOXODROMES AND TRANSFORMATIONS IN PSEUDO-HERMITIAN GEOMETRY

  • Lee, Ji-Eun
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.817-827
    • /
    • 2021
  • In this paper, we prove that a diffeomorphism f on a normal almost contact 3-manifold M is a CRL-transformation if and only if M is an α-Sasakian manifold. Moreover, we show that a CR-loxodrome in an α-Sasakian 3-manifold is a pseudo-Hermitian magnetic curve with a strength $q={\tilde{r}}{\eta}({\gamma}^{\prime})=(r+{\alpha}-t){\eta}({\gamma}^{\prime})$ for constant 𝜂(𝛄'). A non-geodesic CR-loxodrome is a non-Legendre slant helix. Next, we prove that let M be an α-Sasakian 3-manifold such that (∇YS)X = 0 for vector fields Y to be orthogonal to ξ, then the Ricci tensor 𝜌 satisfies 𝜌 = 2α2g. Moreover, using the CRL-transformation $\tilde{\nabla}^t$ we fine the pseudo-Hermitian curvature $\tilde{R}$, the pseudo-Ricci tensor $\tilde{\rho}$ and the torsion tensor field $\tilde{T}^t(\tilde{S}X,Y)$.

ON THE TRANSVERSAL CONFORMAL CURVATURE TENSOR ON HERMITIAN FOLIATIONS

  • Pak, Hong-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.231-241
    • /
    • 1991
  • Recently, many mathematicians([NT], [Ka], [TV], [CW], etc.) studied foliated structures on a smooth manifold with the viewpoint of transversal differential geometry. In this paper, we shall discuss certain hermitian foliations F on a riemannian manifold with a bundle-like metric, that is, their transversal bundles to F have hermitian structures.

  • PDF

ON THE BERWALD'S NEARLY KAEHLERIAN FINSLER MANIFOLD

  • Park, Hong-Suh;Lee, Hyo-Tae
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.649-658
    • /
    • 1994
  • The notion of the almost Hermitian Finsler manifold admitting an almost complex structure $f^i_j(x)$ was, for the first time, introduced by G. B. Rizza [8]. It is known that the almost Hermitian Finsler manifold (or a Rizza manifold) has been studied by Y. Ichijyo [2] and H. Hukui [1]. In those papers, the almost Hermitian Finsler manifold which the h-covariant derivative of the almost complex structure $f^i_j(x)$ with respect to the Cartan's Finsler connection vanishes was defined as the Kaehlerian Finsler manifold. The nearly Kaehlerian Finsler manifold was defined and studied by the former of authors [7]. The present paper is the continued study of above paper.

  • PDF

HERMITIAN METRICS IN RIZZA MANIFILDS

  • Park, Hong-Suh;Lee, Il-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.375-384
    • /
    • 1995
  • The almost Hermitian Finsler structure of a Rizza manifold is an almost Hermitian structure if a special condition satisfies. In this paper, the induced Finsler connection from Moor metric is define and the some properties of a Kaehlerian Finsler manifold with respect to the induced Finsler connection from Moor metric are investigated.

  • PDF