• Title/Summary/Keyword: Hermite interpolations

Search Result 6, Processing Time 0.021 seconds

ERROR ANALYSIS ASSOCIATED WITH UNIFORM HERMITE INTERPOLATIONS OF BANDLIMITED FUNCTIONS

  • Annaby, Mahmoud H.;Asharabi, Rashad M.
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1299-1316
    • /
    • 2010
  • We derive estimates for the truncation, amplitude and jitter type errors associated with Hermite-type interpolations at equidistant nodes of functions in Paley-Wiener spaces. We give pointwise and uniform estimates. Some examples and comparisons which indicate that applying Hermite interpolations would improve the methods that use the classical sampling theorem are given.

HERMITE AND HERMITE-FEJÉR INTERPOLATION OF HIGHER ORDER AND ASSOCIATED PRODUCT INTEGRATION FOR ERDÖS WEIGHTS

  • Jung, Hee-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.177-196
    • /
    • 2008
  • Using the results on the coefficients of Hermite-Fej$\acute{e}$r interpolations in [5], we investigate convergence of Hermite and Hermite-$Fej{\acute{e}}r$ interpolation of order m, m=1,2,... in $L_p(0<p<{\infty})$ and associated product quadrature rules for a class of fast decaying even $Erd{\H{o}}s$ weights on the real line.

PYTHAGOREAN-HODOGRAPH CURVES IN THE MINKOWSKI PLANE AND SURFACES OF REVOLUTION

  • Kim, Gwang-Il;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.121-133
    • /
    • 2008
  • In this article, we define Minkowski Pythagorean-hodograph (MPH) curves in the Minkowski plane $\mathbb{R}^{1,1}$ and obtain $C^1$ Hermite interpolations for MPH quintics in the Minkowski plane $\mathbb{R}^{1,1}$. We also have the envelope curves of MPH curves, and make surfaces of revolution with exact rational offsets. In addition, we present an example of $C^1$ Hermite interpolations for MPH rational curves in $\mathbb{R}^{2,1}$ from those in $\mathbb{R}^{1,1}$ and a suitable MPH preserving mapping.

  • PDF

G3 HEXIC Bézier CURVES APPROXIMATING CONIC SECTIONS

  • HYEONG MOON YOON;YOUNG JOON AHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.1
    • /
    • pp.22-32
    • /
    • 2024
  • In this paper we present a method of conic section approximation by hexic Bézier curves. The hexic Bézier approximants are G3 Hermite interpolations of conic sections. We show that there exists at least one hexic Bézier approximant for each weight of the conic section The hexic Bézier approximant depends one parameter and it can be obtained by solving a quartic polynomial, which is solvable algebraically. We present the explicit upper bound of the Hausdorff distance between the conic section and the hexic Bézier approximant. We also prove that our approximation method has the maximal order of approximation. The numerical examples for conic section approximation by hexic Bézier curves are given and illustrate our assertions.

On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak foundations via finite element computation

  • Zakaria Belabed;Abdelouahed Tounsi;Mohammed A. Al-Osta;Abdeldjebbar Tounsi;Hoang-Le Minh
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.183-204
    • /
    • 2024
  • In current investigation, a novel beam finite element model is formulated to analyze the buckling and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak elastic foundations. The novelty lies in the formulation of a simplified finite element model with only three degrees of freedom per node, integrating both C0 and C1 continuity requirements according to Lagrange and Hermite interpolations, respectively, in isoparametric coordinate while emphasizing the impact of z-coordinate-dependent porosity on vibration and buckling responses. The proposed model has been validated and demonstrating high accuracy when compared to previously published solutions. A detailed parametric examination is performed, highlighting the influence of porosity distribution, foundation parameters, slenderness ratio, and boundary conditions. Unlike existing numerical techniques, the proposed element achieves a high rate of convergence with reduced computational complexity. Additionally, the model's adaptability to various mechanical problems and structural geometries is showcased through the numerical evaluation of elastic foundations, with results in strong agreement with the theoretical formulation. In light of the findings, porosity significantly affects the mechanical integrity of FGP beams on elastic foundations, with the advanced beam element offering a stable, efficient model for future research and this in-depth investigation enriches porous structure simulations in a field with limited current research, necessitating additional exploration and investigation.