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PYTHAGOREAN-HODOGRAPH CURVES IN THE
MINKOWSKI PLANE AND SURFACES OF REVOLUTION

GWANG-IL KIM AND SUNHONG LEE*

ABSTRACT. In this article, we define Minkowski Pythagorean-hodograph
(MPH) curves in the Minkowski plane R!'! and obtain C! Hermite inter-
polations for MPH quintics in the Minkowski plane R!:!. We also have
the envelope curves of MPH curves, and make surfaces of revolution with
exact rational offsets. In addition, we present an example of C! Hermite
interpolations for MPH rational curves in R%! from those in R!*! and a
suitable MPH preserving mapping.
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1. Introduction

Offsets of curves and surfaces are widely used in computer aided design and
numerically controlled machining. They are mathematically well defined but
difficulties in dealing with them arise from the fact that offsets in general are
not rational. In other words, it is not guaranteed to have rational offsets even
though we start with rational curves or surfaces.

Farouki and Neff have analyzed the properties of offsets ([8], [9]). Farouki,
Pham and Pottman have approximated the offsets with rational curves or sur-
faces ([6], [19], [20]). Finally, Farouki and Sakkalis {11] have developed a notion
of Pythagorean-hodograph (PH) curves. They are planar polynomial curves r(t)
such that their hodographs r'(t) = (z'(t),y'(¢)) satisfy the Pythagorean equation
z'(t)% + ¢/ (t)? = o(t)? for some polynomials o(t). The offsets of PH curves are
rational because the radical term |/2'(¢)2 + y/(t)? becomes a polynomial o(t).
PH curves can effectively be used to approximate curves, and to interpolate
given data [10].
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One of the most expensive parts in dealing with offsets is trimming process.
So there are amounts of articles about this topic ([1], [2], [3]). Medial axis
transform (MAT) (5] can be used to generate offsets of objects. Since offsets can
be regarded as envelopes of circles, MAT makes the trimming process almost
trivial. When #(t) = (z(t), y(t),7(t)) is a segment of the medial axis transform,
the envelope formula contain the term /z(t)? + y/(t)2 — r'(t)2. Motivated by
this term, Moon have introduced Minkowski Pythagorean-hodograph (MPH)
curves in the Minkowski space R*! {12]. Choi et al. have presented G* Hermite
interpolations of the MAT of a planar domain for MPH cubics [5]. Hermite
interpolations for MPH quartic have solved by Kim and Ahn [15]. Recently
Kosinka and Jiittler have analyzed G' Hermite interpolations for MPH cubics
[17]. In higher dimensional space R*!, Cho et al. [4] define MPH curves and use
these curves to parametrize canal surfaces, which has been done by Peternell
and Pottmann [18].

In this article, we define MPH curves in the Minkowski plane R:1. These
curves may be considered as particular ones in the Minkowski space R*!. But
considering only curves in R!!, we could solve C! Hermite interpolation prob-
lem for MPH quintics in the Minkowski plane R*!. Here we use the one-to-one
correspondence between the PH curves in R? and the MPH curves in R!"*. With
the advantage of the complex number system we apply the charaterization of
PH curves by their complex roots in R? and we make the characterization of
MPH curves in R, Then with this characterization, we solve C! Hermite in-
terpolation problem for MPH quintics in R*!. For an application of C! Hermite
interpolations, we obtain the surfaces of revolution, which have exact rational
offset surfaces. In addition, appling the interpolations in R!! and using some
suitable MPH preserving mappings, we present an example of C' Hertime inter-
polations with MPH rational curves in R*?.

2. Minkowski Pythagorean-hodograph curves

In [11], Farouki and Sakkalis have introduced Pythagorean-hodograph curves.
A polynomial curve r(t) = (z(t), y(t)) in R? is called a Pythagorean-hodograph
(PH) curve if there is a polynomial o(t) satisfying

2 () +y (1) = o(t)”.

PH curves in the Minkowski plane are similarly defined. The Minkowski plane
R is the real vector space R? whose inner product is defined as follows. For
two vectors a = (a;,az) and b = (b, b) in RV, the inner product (a, b)g1. is
defined by

(a, b)RI,l = a1b1 - agb'z.
Definition 1. In R}!, a polynomial curve r(t) = (s(t),r(t)) is a Minkowski
Pythagorean-hodograph (MPH) curve if there is a polynomial o(t) satisfying

(' (&),x' (t))rer =7 (t)? — §'(t)® = o(t)%.
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We have the characterization of MPH curves as a corollary to Theorem 3 in
[16]:

Theorem 1. Let r(t) = (s(t),r(t)) be ¢ polynomial curve in the Minkowski
plane RY. Then r(t) is a MPH curve with s'(t)? — r'(t)? = o(t)? for some
polynomial o(t) if and only if there are polynomials h(t), u(t), and v(t) with
ged(u(t),v(t)) = 1 so that

§'(t) = h(t)[u(®)? + v()?],

r'(t) = h(t)[2u(t)o(2)], (1)

o(t) = h(t)[u(t)® — v(t)?].

Proof. Suppose that h(t), u(t), and v(t) are polynomials with ged(u(t), v(t)) =1,
satisfying (1). Then we have §'(t)2 — /() = o(2)?.

Let r(t) = (s(t),r(t)) be a MPH curve in the Minkowski plane R with

$(07 — (1) = o1

for some polynomial o(t). Then from Theorem 3 in [16], we know that there are
polynomials h(t), u(t),v(t), a(t), b(t), a(t) with

—a(t)? = a(t)b(t), ged(u(t), v(t)b(t)) = ged(v(t), u(t)a(t)) = ged(a(t)) = 1
so that

s'(t) = A(t){u(t)a(t) — v(t)*b(t)], r'(t) = h(t)[2u(t)u(t)a(t)].

But since ged(a(t)) = 1 and —a(t) = a(t)b(t), we may write a(t) =1, a(t) =1,
and b(t) = —1. Therefore we obtain (1). O

Suppose that r(t) = (s(t),7(t)) is a MPH curve, which satisfy
§(t) ~r'(t)* = o(t)? ()

for some polynomial o(t). Then the polynomial curve s(t) = (A(t),r(t)) is a
PH curve in R? where A(t) = [} o(€)dé. Conversely if s(t) = (A(t),r(t)) is a
PH curve, which satisfy (2), then r(t) = (s(t),7(t)) be a MPH curve. Therefore
from Theorem 1 in [14] we also have the characterization of MPH curves:

Theorem 2. Let r(t) = (s(t),r(t)) be a polynomial curve in the Minkowski
plane R, Then r(t) is o MPH curve with s'(t)? — r'(t)? = a(t)® for some
polynomial o(t) if and only if there exists a polynomial p(t) of real variable t
with complexr coefficients, whose roots consist of only real numbers or pairs of
complex numbers which are equal up to conjugate, so that

$@) =Ip@® r'(t) =Im(p(t)), o(t)=Re(p(t)) ©)
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In ([5], [12]), Choi et al. have studied envelope curves of 1-parameter family
of circles. With the spine curve s(t) = (s1(t), s2(t)) and the radius information
r(t), one can write the envelope curve (z(t), y(t)) where

_ (t) 7 V/STEP + 4 = P sh(t)
=(t) = s1(t) + 7(0) = i 2’

y(t) = sa(t) +7(2) —r'(t)s3(t) % {gs(lt()?i +s ,zs(’zt()tz)z —TEP (1)

Therefore a polynomial curve r(t) = (s1(t), s2(t),7(t)) in the Minkowski space
R2!, which satisfies s (t)? + sh(t)? — r(t)? = o(t)? for some polynomial o(t),
produces a trimmed envelope curve. Here if sp(t) = 0, then the curve r(t)
become a MPH curve in R!'! and produce the envelope curve as

TR (0"

o) =50 =10 T o) =) (@
Here we write s(t) for s1(t). The d-offset curve can be written as
T" s — 2
) =50~ 60+ 2, w2 (010+9)- LT g

The formula (4) may come directly from

(@) = s()* +y()* =r()®, (2(t) —s(t)) - ' (@) = —r(t) - 7' (D).

From the envelope curve e(t) = (z(t), y(t)) of an MPH curve r(t) = (s(t), 7(t))
in the Minkowski Plane RY!, we obtain the surface of revolution

S(t,0) = (X(t,0),Y(t,0),Z(¢t,0)),

which is given by

X(t,0)=z(t), Y(t,0)=y(t) cosh, Z(t,0)=y(t) sind.
The d-offset Ss(t,6) = (X5(t,0), Ys(t,8), Z5(t,0)) of S(t,8) can be written by

X5(t,0) = z5(t), Ys(t,0) =ys(t)-cosl, Zs(t,0)=ys(t) - sin.
For example, let
u(t)=t2+t+1, w(t)=t>—t, h(t)=1

Then we have the MPH curve r(t) = (s(t),r(t)) given by

SO =u®)? +v@)? =2 +43+2t+1, r(t) =2+ -2t

We also have the envelope curve (z(t),y(t)) and its §-offset (z5(t),ys(t)) from
the formula (4) and (5), and the surface of revolution S(t,) and its §-offset
Ss(t,8). The one on the left in Figure 1 shows the circles of radius 7(0) and
(1), centered (s(0),0) and (s(1),0), respectively, and the envelope curve and
its 1-offset curve. The other in Fig. 1 shows the surfaces of revolution of the
envelope curve and its 1-offset.



Pythagorean-hodograph curves in the Minkowski plane 125

FIGURE 1. The surface of revolution and its 1-offset surface

3. C! Hermite interpolations in the Minkowski plane

In this section, we will obtain C' Hermite interpolations for Pythagorean-
hodograph quintics in the Minkowski plane. In the Euclidean plane, Farouki
and Neff have produced C' Hermite interpolations [10]. In [13], Moon et al.
have analyzed the Hermite interpolations and have given a way of selecting the
best among the four interpolations.

We use the complex representation for plane curves, which has been intro-
duced by Farouki [7]: we identify a polynomial curve r(t) = (s(t),7(t)) with a
curve r(t)* = s(t) + /—1r(t) in the complex plane.

We want to find C* Hermite interpolations for MPH quintics r(t) = (s(t),7(2)).
That is, for given data p; = (pi1,pi),Ps = (ps1,Pf2),di = (di1,di2), and
ds = (ds1,ds2), we are going to find MPH quintics r(t), which satisfy

r(0)=p;, r(l)=ps, r0)=d; r'(1)=d;. (6)
Here by changing the initial and terminal points, we may assume that d;; > 0,
df1 >0, and ps1 —pa > 0.
Theorem 3. Let p; = (pi1,pi2), Pr = (Pr1,052), di = (di1,di2) and dy =
(ds1,dys2) be vectors in R? with
dil > 0, dfl > 07 bs1 = Pi1 > 07
d > dy, d} >d%,  (ps1—pa)® = (pr2 — pia)®.

A=/d} —dh+V-1dp, B=,/d3 —d3, +V-1dp,

We set
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B A 1\2
C"i@’ D‘§<C_§)’

A A
01=,’0f1—Pi1~|9—'—|D|, ﬂ=Pf2“Pi2—Im<'9-+D>,

E = ++/o? - 82 +/=18.
Ifa >0 and o® — 32 >0, then r(t) = (s(t),r(t)) with

t5 ReX
=pa + K| (= - ==t
s(0) = pa+ 1K1 (5 -
2
+L)£|—+§Mt3 —Re(XY)t? + |Y|2t> ,
KX I X2+
0 = pa+ T ImUEK) | IO 27)
~Im(KXY)t? + Im(KY?)t,
are MPH quintics, which satisfy (6), where
1 A

X=1+(1-0)Y, K=g5

(i,/%@(mn)

Proof. We want to find MPH quintics r(t) = (s(t), r(t)) with §'(t)*> — /(¢)? =
o(t)? for some polynomial o(t), which satisfy (6). Moreover we want that s'(t)
and /() are relatively prime. Then from Theorem 2 we have

SO =Kt -2)(t-2)?, @) =InKE-A)t-2)?) 7

for some complex constant K, A1, Ag. Weset X = A\{ + A2 and Y = A\j g, Then
we have

s'(t) = |[K(t* — Xt+Y)?|

= |K|(t* - Xt + Y)(t> - Xt +Y)

=Kt - (X + X+ (XP+Y+ ) - (XY + XY+ Y], (8)
r'(t) = Im(K (2 — Xt +Y)?)

=Im(K[t* - 2Xt3 + (X% + 2Y)t2 - 2X Yt + Y?)).

These yield
5 (X+X)tr (XP+Y+Y)E
5 4 3
XY + XY)t?
S EOE iy, ©)

5 4 2 3
r(t) = r(0) = Im [x (?5- BRI A th)} -
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From (6), (8), and (9), we have

d} = |[KY?|+ V-1Im(KY?), (10)
d} = |K(1-X+Y)?*|+v~-1Im(K(1 - X +Y)?), (11)
. . 1 X+X |XP+Y+Y XY +XY
py-pi =i (5 - 2 BT XY ) g
2
+\/—1Im[K<é——)2—(-+2Y_§X —XY-I-Y2>].

Since d} # 0, from (10) we have KY? # 0. We set A = KY? B = K(1 -

X+Y)% andC= Li;,—ﬂ From (10) and (11), we get

A= \/d?l“‘dgg'i'\/"‘ldﬂa
B=+,/ l—d?r2+\/—1df2,

C=4=

)

w5

Now we observe that

A _ 1 X+X |XP+Y+Y XY +XY 9
5| 1o+ 1 = e (5 - T2 BEE XY ),
and
2
(24 D+E)tm|k (P X X xy iy ,
9 5 2 3
where
p_KY2(1-X+Y 1\
) Y 3) "
KY?[1 5(1-X+Y 2
G

Therefore from (12) we have
* - A A
In other words, we have F = ++/a? — 82 + /=113, where

A A
a=plz_p0:z:_"g—’_|D|a ,3=p1y_p0y“'1m<‘§+D>-
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A1 2
Here we must have a > 0 and o — 32 > 0. Since E = 0 (? - g(C+ 1)) )
we have ]

(i,/%—‘? + g(c+1)>

Since C = (1— X +Y)/Y and A= KY?, we have
A
X=1+(1-0Y, K=

Therefore from (9), the proof is done. O

FIGURE 2. Hermite interpolations in R*! and the surface of revolution

Let p; = (1,2), py = (10,3), d; = (3,—1) and d; = (4, —2) be Hermite data
in R, Theorem 3 gives sixteen MPH quintics as Hermite interpolants for the
data (Fig. 2). Among those MPH quintics, the one, which is chosen from

A= \/dgl_d?2+\/’_‘idi2a B= \/d_gfl _dgg“l'\/“_ldf%
c=yf2, E= @+ VTh,

1

[30E 5 ’
<— e + §(C + 1))
is the only regular one, i.e., 8'(t)? — '(t)? # 0 for all ¢ € [0,1]. The one on the

right in Fig. 2 shows the surface of revolution from this regular one.

Now let q; = (gi1,g:2), a5 = (g51,952), bi, by be G* data for envelope curves
e(t) = (z(t),y(t)) in (4) with giz > 0, gr2 > 0. We want to find envelope curves

Y =
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e(t) satisfying

q; = 6(0), a5 = e(l), b = ’—,(—_)) bf =

From the data we have G* data p; = (p:1,pi2), Pf = (ps1,P52),di, dy for MPH
curves r(t) = (s(t),r(t)) in RM! satisfying (4). From the facts:
(a) (pa,0) is the intersection point of z-axis and the line (z — ¢i1) + bi(y —
gi2) = 0;
(b) piz is the distance between q; and (p;1,0),

and from (4), we obtain

pi1 =i + qiobi, P2 =i/l + b2, di= ——==

and
by

,/1+b}

For example, let q; = (1,1), qf = (10,5), and b; = 0 = by. Then we have
pi = (1,1), py = (10,5), and d; = 0 = dy. With these data we apply Theorem 3
to solve Hermite interpolations for MPH quintics in the Minkowski plane and
obtain the corresponding envelope curves and their offsets. We have the envelope
curve e(t) = (z(t), y(t)) and its 1-offset with d; = (8,0) and dy = (4,0) in Fig. 3.

pr1=qp+apby, pra=gap/1+b5, df=

O T T T T T T T T T T
2 4 6 8 10

FIGURE 3. Envelope curve and its 1-offset

4. An application to Hermite interpolation in R%!

In this section, we give an example of MPH rational curves as Hermite inter-
polants in R%!, Here we apply Theorem 3 and MPH preserving mappings.
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Consider the stereographic projection ¥ : R3\{(z,y,2) € R® : z = 1} — R?,

which is defined by
(Y
¥(z,y,2) = (l_z,l_z).

Then ¥ maps a point (z,y,2) to the point, which is the intersection point of
zy-plane and the line passing (0,0,1) and (z,¥, 2).

Now consider a curve v: [a,b] — R3\{(z,y,2) € R® : 2z = 1} and the curve
A(t) = U(y(t)). We set y(t) = (z(t), y(t), 2(t)). Then we have

~ )y
At) = ¥(y(t) = (1 —2(t) 1— z(t))

L (20— =) + 220 YO 2(1)) + y(H)7 ()
*““‘( D=2 (-0 )'
Let e0,2) = (U 2V (o2 w00 = DO, nd o) = VD)
en since
(1= 2(0)%2 (82 + 22(8)(1  2(8)) ()2 (8) + 2(t)27'(1)?

v = 1=
and
sy — (Lo P07 + 2000 = ) O (0 + P2 0
120" !
we have
W (£ —of () = e [(1 — 20 (1) — ¥ (1))

(1-2(2))*
+2(1 - 2(t)2' () (z (0 () -yt () + 2/ (1) (2()* - y(®)*)).  (13)
Let S and T be the surfaces, which are defined by {(z,y,2) € R® : 22+ 22—
y?2 =1, 2z # 1} and RV {(u,v) € RV} @ 42 — 2 = —1}, respectively. Then
¥: § — T is a one-to-one correspondence with the inverse mapping
_ u v u? -2 ~1
v () = (uz—v2+1’u2-—v2+l’uz——v2+1)'
Suppose (t) = (z(t), y(t), z(t)) are on S. Then we have
2(t)2'(t) + z(t)2' (t) — y(t)y'(t) = 0.
Therefor from (13), we have

2
u/(t)2 _ 'l)/(t)2 — (1 _1Z(t)> (z’(t)2 _ y/(t)z + z'(t)2) .

This equation implies that v(t) is a MPH curve if and only if A(t) = ¥(v(t)) is
a MPH curve. In this sense ¥ and ¥~! are MPH preserving mappings.

Let P; = (0,0,—1) and Py = (1,0,0) be points on S and D; = (1,0,0) and
Dy = (0,0,1) be tangent vectors to S on P; and Py, respectively. Then we
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can find MPH rational curves on S, as Hermite interpolants for the above data.
First let

pP: = \II(P'L) = (O’O)apf = W(Pf) = (110)1di = d\Illp-.(Dl) = (1/2’ 0)7

and dy = d¥|p,(Dy) = (1,0). Now apply Theorem 3 in order to obtain Her-
mite interpolants y(t) for the data p;, py, di, and dy. Then we have Hermite
interpolants y(t) = ¥~ (A(t)) on the surface S for the data P;, Py, Dy, and Dy.
See Fig. 4.

FIGURE 4. Hermite interpolations in R! and on §

Remark 1. Hermite interpolants vy(t) = ¥(y(t)) are MPH rational curves on
S. It means that these curves are sometimes unbounded and not connected.
This property comes from the singularity of =1, Therefore in order to obtain
suitable Hermite interpolants, we must further explore general MPH preserving
mappings. These subject are our current research topic.

5. Conclusion

In this paper we introduce MPH curves in the Minkowski plane R!'!. Using
the one-to-one correspondence between the PH curves in R? and the MPH curves
in RY!, and the complex representation for plane curves, we solve C! Hermite
interpolation problem for MPH quintics. These Hermite interpolations induce
an important application in Computer Graphics and Industry; the surfaces of
revolution with exact rational offset surfaces. In addition, using some suitable
MPH preserving mappings, we show an example where a C' Hermite interpola-
tion problem for MPH rational curves in R*! is to be reduced to a C' Hermite
interpolation problem for those in R, This implies that the theory for MPH
curves in Rb! might be an essential basis for the theory for those in R%1.

Finally, we introduce some research themes for further studies. Related to the
results in this paper, there still remain several problems about the generalization
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and theoretical completion of the reducing method using MPH preserving map-
pings. Moreover, studies for the general theories for MPH preserving mappings
and their applications are also in need. Now, we are tackling one of them.
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