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ABSTRACT. In this paper we present a method of conic section approximation by hexic Bézier
curves. The hexic Bézier approximants are G3 Hermite interpolations of conic sections. We
show that there exists at least one hexic Bézier approximant for each weight of the conic section.
The hexic Bézier approximant depends one parameter and it can be obtained by solving a
quartic polynomial, which is solvable algebraically. We present the explicit upper bound of
the Hausdorff distance between the conic section and the hexic Bézier approximant. We also
prove that our approximation method has the maximal order of approximation. The numerical
examples for conic section approximation by hexic Bézier curves are given and illustrate our
assertions.

1. INTRODUCTION

Conic section approximation by Bézier curves is an important problem in the fields of
CAD/CAM and CAGD (Computer Aided Geometric Design). The researches for finding
Bézier approximants of low degree and with high approximation order have been studied in
recent forty years.

For planar curve, the maximal order of approximation by the n-th degree Bézier approx-
imant is 2n [1]. The G2 Hermite interpolation of planar curve by cubic Bézier curves with
approximation order six has been presented by de Boor et al. [2]. The planar curve approxi-
mation by G2 quadratic Bézier biarcs with approximation order four can be obtained [3]. A lot
of approximation methods for circular arc by Bézier curves of degree 2 ≤ n ≤ 5 with approxi-
mation order 2n were proposed [4, 5, 6, 7, 8, 9]. Using Chebyshev property, the approximation
methods of circular arcs by polynomial curves of all degree n with very high precision have
been presented [10, 11].

In case of conic approximations, Floater [12] presented the conic approximation by Gn−1

polynomial curves of all odd degree n ≥ 3 having approximation order 2n. Many methods
approximating conic sections by Bézier curves of degree 2 ≤ n ≤ 5 have been obtained with
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at least G2 continuity and with the maximal order of approximation [13, 14, 15]. Using the
polynomial factorization over C, the conic section approximation by polynomial curves of all
degree n having 2n contacts with the conic sections was presented [16].

Recently, the approximation methods for circular arcs by hexic polynomial curves with ap-
proximation order twelve have been presented [17]. In this paper we aim to find the hexic
Bézier curves approximating conic sections with at least G2 continuity and with approximation
order twelve. Our method yields the hexic Bézier approximant which is G3 Hermite interpola-
tion of the conic section. We show that there exists at least one G3 hexic Bézier approximant
for each weight of the conic section. The hexic Bézier approximant depends one parameter
which can be obtained by solving a quartic polynomial. We present the explicit upper bound
of the Hausdorff distance between the conic section and the hexic Bézier approximant, and
thus our method yields the optimal approximation from four solutions. We also prove that
the approximation order of our method is twelve. The numerical examples for conic section
approximation by hexic Bézier curves are presented to illustrate our assertions.

The remainder of this paper is constructed as follows. In Section 2, the preliminaries for the
conic sections and their approximation by Bézier curves are given. In Section 3, a method of
conic section approximation by hexic Bézier curves are presented and its error bound analysis
is obtained. The numerical examples are given in Section 4, and our study is summarized in
Section 5.

2. PRELIMINARIES

In this section we present the preliminaries for conic sections and the geometric Hermite
interpolation. Any conic section c can be represented by the standard quadratic rational Bézier
form [13, 12, 18, 19],

c : [0, 1] → R2, c(t) =
B2

0(t)c0 + wB2
1(t)c1 +B2

2(t)c2
B2

0(t) + wB2
1(t) +B2

2(t)
,

where B2
i (t) =

(
2
i

)
ti(1− t)2−i, i = 0, 1, 2, are quadratic Bernstein polynomials, c0, c1, c2 are

the control points in R2, and w ∈ R is the weight associated with c1. If the conic section c is
subdivided at the shoulder point

c(1/2) =
m+ wc1
1 + w

,

where m = (c0 + c2)/2, then two subdivided conic sections c1, c2 are obtained and they have
the same weight w =

√
(w + 1)/2 and different control points

c0,
c0 + wc1
1 + w

, c(1/2), and c(1/2),
c2 + wc1
1 + w

, c2,

respectively, [15]. Any point p ∈ R2 can be written uniquely in terms of barycentric coor-
dinates τ0, τ1, τ2, where τ0 + τ1 + τ2 = 1, with respect to the triangle △c0c1c2 : (x, y) =
τ0c0 + τ1c1 + τ2c2. Let f : R2 → R be defined as

f(p) = τ21 − 4w2τ0τ2.
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The conic section c satisfies the equation f(c(t)) = 0 for all t ∈ [0, 1], [13, 12].
Let x : [a, b] → R2 be a parametric curve. If there exists a regular bijective reparameteriza-

tion ρ : [a, b] → [0, 1] with ρ′ > 0, such that

djx

dtj
(t) =

dj(c ◦ ρ)
dtj

(t), t = a, b, j = 0, 1, . . . , k,

then we say that x is a Gk Hermite interpolation of c [17]. It is well known [12] that x is a
Gk Hermite interpolation of the conic section c if and only if the function f(x(t)) has zeros of
multiplicity k + 1 at t = a, b with c′(0) · x′(a) > 0 and c′(1) · x′(b) > 0.

The Hausdorff distance between two curves x : [a, b] → R2 and y : [c, d] → R2 is defined
by

dH(x,y) = max{max
t∈[a,b]

min
s∈[c,d]

||x(t)− y(s)||, max
s∈[c,d]

min
t∈[a,b]

||x(t)− y(s)||},

[12, 7].

3. GEOMETRIC HERMITE INTERPOLATION OF CONIC SECTIONS BY HEXIC BÉZIER
CURVES

In this section, we present the geometric Hermite interpolation of the conic section by hexic
Bézier curves. Let b : [0, 1] → R2 be the hexic Bézier curve approximating the conic section
c, represented by

b(t) =

6∑
i=0

B6
i (t)bi,

where B6
i (t) =

(
6
i

)
ti(1 − t)6−i, i = 0, 1, . . . , 6, are the hexic Bernstein polynomials and

b0,b1, . . . ,b6 are the control points of b in R2. The control points can be expressed in
barycentric coordinates with respect to △c0c1c2,

bi =

2∑
j=0

bi,jcj with bi,0 + bi,1 + bi,2 = 1,

for i = 0, 1, . . . , 6. We consider the symmetry of bi,j with respect to i = 3 and j = 1, i.e.,
bi,j = b6−i,2−j , for 0 ≤ i ≤ 6, 0 ≤ j ≤ 2, since the symmetry of bi,j yields that when c is
symmetric with respect to the line passing c1 and m, so is its approximant b. The curve b is
G1 Hermite interpolation of c if and only if b0,1 = b0,2 = 0, b1,2 = 0, b1,0 > 0. Then, all
control points of b can be expressed by only four parameters b1,0, b2,0, b2,2, b3,0, as follows:

b0 = c0 b1 = b1,0c0 + (1− b1,0)c1

b2 = b2,0c0 + (1− b2,0 − b2,2)c1 + b2,2c2

b3 = b3,0c0 + (1− 2b3,0)c1 + b3,0c2 (3.1)
b4 = b2,2c0 + (1− b2,0 − b2,2)c1 + b2,0c2

b5 = (1− b1,0)c1 + b1,0c2 b6 = c2.
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The error function f ◦ b : [0, 1] → R is defined by

f(b(t)) = τ21 − 4w2τ0τ2,

where τ0, τ1, τ2 are the barycentric coordinates of b(t), t ∈ [0, 1]. The G1 Hermite interpo-
lation b of c implies that f(b(t)) has a factor t2(1 − t)2. Let f1(t) = f(b(t))/t2(1 − t)2.
Since

f1(0) = 36− 72b1,0 + 36b21,0 − 60w2b2,2,

b is G2 Hermite interpolation of c if and only if f1(0) = 0 or equivalently

b2,2 =
3

5

(
1− b1,0

w

)2

. (3.2)

Then, f1(t) has a factor t(1− t). Let f2(t) = f1(t)/t(1− t). Since

f2(0) =
4{27(b1,0 − 1)3 + 9(1− b1,0)(5− 6b1,0 + 6b21,0 − 5b2,0)w

2 − 20b3,0w
4}

w2
,

b is G3 Hermite interpolation of c if and only if f2(0) = 0 or equivalently

b3,0 =
9

20

3(b1,0 − 1)3 + (1− b1,0)(5− 6b1,0 + 6b21,0 − 5b2,0)w
2

w4
. (3.3)

Then, f2(t) also has a factor t(1− t). Let f3(t) = f2(t)/t(1− t). Now, since f3(0) is of degree
at least two with respect to b2,0 and b1,0, their roots for f3(0) = 0 are complicated. Thus we
use the interpolation of the shoulder point instead of the endpoint. Since

b(1/2) =
m+ 31c

32
+

m− c1
32

{6b1,0 + 15b2,0 + 20b3,0 + 15b2,2},

b interpolates the shoulder point if and only if b(1/2) = (m + wc1)/(1 + w), which is
equivalent to

b2,0 =
9(1− b1,0)

3 + 3(b1,0 − 1)(6− 7b1,0 + 2b21,0)w
2 − 2b1,0w

4

5w2(w2 + 3b1,0 − 3)

+
w2(31− w)

15(w + 1)(w2 + 3b1,0 − 3)
. (3.4)

By Eqs. (3.1)-(3.4), b has unique parameter b1,0. Let b = 1 − b1,0 for convenience. Now, we
construct the approximant b by determining the parameter b. Since f(b(t)) is symmetric with
respect to t = 1/2 and has a zero at t = 1/2, f(b(t)) has double zeros at t = 1/2 and so is
f2(t). Let f3(t) = f2(t)/(t− 1/2)2. Then f3 is a quadratic polynomial and

f3(t) =
16(w − 1)f4(t)

w2(w + 1)2(w2 − 3b)2
,
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FIGURE 1. Graphs of implicit curves of the equation g1(b) = 0 in the wb-
plane. All curves pass through the point (w, b) = (1, 13).

where f4(t) = g0(b)g1(b)− 4w2(w + 1)(w − 3b)2g2(b)
2(t− 1/2)2 and

g0(b) = w2(5− 2w + w2)− 12w(w + 1)b+ 9(w + 1)2b2,

g1(b) = 16w5 − 24w3(w + 2)(w + 1)b+ 9w2(w + 1)(w2 + 4w + 19)b2

−108w(w + 1)2b3 + 81(w − 1)(w + 1)2b4, (3.5)

g2(b) = −w(3w − 5) + 3(w + 1)(w − 3)b+ 9(w + 1)b2.

The quadratic polynomial g0 with respect to b has only two imaginary zeros

b =
w

3

2± (1− w)i

1 + w

and no real zero. Thus if b is a zero of quartic polynomial g1, then f(b(t)) has twelve zeros in
the t-interval [0, 1], and b has twelve contacts with the conic section c.

Proposition 3.1. For any conic section c with the weight w ∈ (0, w0), there is at least one
G3 Hermite interpolation of c by the hexic Bézier curve having twelve contacts with c, where
w0 ≈ 1.427 is the zero of cubic polynomial h1(w) = w3 − 21w2 + 9w + 27 contained in the
open interval (7−

√
46, 7 +

√
46).

Proof. For all w > 0,

g1(0) = 16w5 > 0, g1(1) = h0(w)h1(w),
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FIGURE 2. Graphs of functions g1(0)/200 (magenta color), g1(1)/300 (blue),
g1(

w−1
5 + 1

3) (red), g1(w−1
6 + 1

3) (green), on the w-interval [0, 3].

where h0(w) = w2 − 6w − 3. Since h′1(w) has two extremum at w = wj , where wj =

7 + (−1)j
√
46, j = 1, 2, and

h1(w1) > 0 > h1(w2),

h1 has a unique zero w0 in the open interval (w1, w2). It follows from h0(w) < 0 and h1(w) >
0 for all w ∈ (0, w0) that g1(1) < 0. By the intermediate value theorem, for all w ∈ (0, w0),
g1 has at least one zero in the b-interval (0, 1), and thus there is at least one G3 Hermite
interpolation of c by the hexic Bézier curve having twelve contacts with c. □

Even if Proposition 3.1 is proved for w ∈ (0, w0), we can extend the interval to (0, 3]. For all
w ∈ (0, 3], g1(0) is positive and at least one of three values g1(1), g1(w−1

5 + 1
3), g1(

w−1
6 + 1

3)
is negative, as shown in Fig. 2. Thus g1 has at least one zero in the b-interval (0, 1) for all
w ∈ (0, 3] by the intermediate value theorem. We omit here the rather complicated proof.

Since b1,0 > 0 is equivalent to b < 1, the hexic Bézier curve b with b < 1 satisfying
g1(b) = 0, is the G3 Hermite interpolation of c and has twelve contacts with c. The error
bound analysis for the G3 Hermite interpolation b of c is as follows.

Proposition 3.2. If the control points of hexic Bézier curve b with b satisfying g1(b) = 0 are
contained in △c0c1c2, then

dH(c,b) ≤ max(
1

w2
, 1)

g3(b)
2

24 · 36
|w − 1|
w + 1

|c0 − 2c1 + c2|,

where g3(b) = g2(b)(w − 3b)/(w2 − 3b).
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Proof. If all control points are contained in △c0c1c2, then so is b by the convex hull property.
Thus we have

dH(c,b) ≤ 1

4
max(

1

w2
, 1) max

t∈[0,1]
|f(b(t))||c0 − 2c1 + c2|,

from Lemma 3.2 in [12]. If b is the zero of g1 in Eq. (3.5), then

f(b(t)) =
64(w − 1)(w − 3b)2g2(b)

2

(w + 1)(w2 − 3b)2
t4(t− 1/2)4(1− t)4,

which has the extremum at t = 1/2±
√
3/6. It follows from

max
t∈[0,1]

|f(b(t))| = g2(b)
2

22 · 36
|w − 1|(w − 3b)2

(w + 1)(w2 − 3b)2

that

dH(c,b) ≤ max(
1

w2
, 1)

g3(b)
2

24 · 36
|w − 1|
w + 1

|c0 − 2c1 + c2|.

□

For the given conic section, our approximation curve depends only on b which are zeros of
g1. Since g1 is a quartic polynomial, it is solvable algebraically. As stated in Proposition 3.2,
the upper bound depends on the value |g3(b)|. The best approximation from the four solutions
of g1(b) = 0 can be obtained when |g3(b)| is minimized.

The asymptotic analysis of our method is as follows. If the length h of the conic section
goes to zero, then w − 1 = O(h2) [12], and the quartic polynomial g1 has three analytic zeros
and one divergent zero, since

α3 = −432 +O(h2) and α4 = O(h2),

where α3, α4 are the coefficients of the third, fourth order term of the quartic polynomial g1,
respectively. The three analytic solutions of g1(b) = 0 are

1

3
+

w − 1

4
+O((w − 1)2),

1

3
+

(3±
√
3)

6
(w − 1) +O((w − 1)2),

and their asymptotic behaviors of g3(b) are

1

8
(w − 1)2 +O((w − 1)3), (26± 15

√
3)2(w − 1)2 +O((w − 1)3), (3.6)

respectively.

Proposition 3.3. The approximation order of the approximant b with any analytic zero b of g1
is twelve.

Proof. If b is any of three analytic zeros of g1, then

b1,0 =
2

3
+O(h2), b2,0 =

2

5
+O(h2), b3,0 =

1

5
+O(h2), b2,2 =

1

15
+O(h2)
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FIGURE 3. (a) Conic section c (magenta color) with the control points (0, 0),
(8, 10), (10, 0) and the weight w = 2, and the hexic Bézier approximant b
(green). (b) After the shoulder point subdivision, c (magenta) and two hexic
Bézier approximations b1 (green) and b2 (blue).

and thus all control points of b are contained in the triangle △c0c1c2 for sufficiently small
h > 0. By Proposition 3.2, we have

dH(c,b) ≤ max(
1

w2
, 1)

g3(b)
2

24 · 36
|w − 1|
w + 1

|c0 − 2c1 + c2|.

Since the quantities w − 1 and |c0 − 2c1 + c2| are O(h2) [12], and by Eq. (3.6),

g3(b)
2 = O(h8),

the approximation order is twelve. □

4. NUMERICAL EXAMPLES

We present two numerical examples in this section. The first example is hyperbola approxi-
mation by hexic Bézier curves. The hyperbola segment c in quadratic rational Bézier form has
the control points (0, 0), (8, 10), (10, 0) and the weight w = 2, as shown in Fig. 3. The quartic
polynomial g1 in Eq. (3.5) is solvable explicitly and has two real zeros b ≈ 0.493, 0.540, and
we have

g3(0.493) ≈ 2.510× 10−2, g3(0.540) ≈ 0.162.

Thus our method yields the hexic Bézier approximation b with b ≈ 0.493 and by Proposition
2, the upper bound is

dH(b, c) ≤ 3.761× 10−7.

If the upper bound is larger than the error tolerance, then a subdivision is required. Subdividing
at the shoulder point, two subdivided conic segments c1 and c2 are obtained. They have the
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same weight w =
√
6/2 and the control points

(0, 0),

(
16

3
,
20

3

)
,

(
7,

20

3

)
, and

(
7,

20

3

)
,

(
26

3
,
20

3

)
, (10, 0),

respectively. Two conic sections have the same polynomial g1 in Eq. (3.5), which has four real
zeros b ≈ 0.377, 0.387, 0.564, 5.937, and their values of g3(b) are

1.068× 10−3, 6.938× 10−3, 3.188, 27.66

in order. Thus our approximation method yields two hexic Bézier curves b1 and b2 with
b ≈ 0.377 for approximating c1 and c2, respectively, as shown in Fig. 3(b), and the upper
bounds are

dH(b1, c1) ≤ 7.520× 10−11 and dH(b2, c2) ≤ 6.598× 10−11,

respectively. The upper bound of global error is 7.520 × 10−11, and if it is larger than error
tolerance, then subdivisions and approximations are repeated. The numerical approximation
orders are 12.29 and 12.48, respectively, which can be computed by

log2

(
dH(b, c)

dH(bj , cj)

)
,

j = 1, 2 [8, 20].
The second example is ellipse approximation by hexic Bézier curves. As shown in Fig. 4,

the implicit equation of the ellipse is given by (x/3)2 + y2 = 1. The conic section c which
is a quarter ellipse has the control points (3, 0), (3, 1), (0, 1) and the weight w = cos(π/4).
The quartic equation g1(b) = 0 has four real roots b ≈ 0.156, 0.255, 0.264, −3.894 and their
values of g3(b) are

4.276, 8.847× 10−3, 1.363× 10−3, 2.855× 102

in order. Thus our approximation method yields the hexic Bézier curve b with b ≈ 0.264 and
its upper bound is

dH(b, c) ≤ 1.728× 10−10

Subdividing the conic section at the shoulder point, the subdivided conic sections c1 and c2

have the same weight w =
√

2 +
√
2/2 and the control points

(3, 0), (3,
√
2− 1),

(3, 1)√
2

and
(3, 1)√

2
, (3

√
2− 3, 1), (0, 1),

respectively. Two conic sections have the same polynomial g1, which has four real zeros b ≈
0.277, 0.313, 0.316, −17.09 and their values of g3(b) are

0.292, 6.955× 10−4, 1.070× 10−4, 5.272× 103,

in order. Thus our method yields two hexic Bézier curves b1 and b2 with b ≈ 0.316 for
approximating c1 and c2, respectively, as shown in Fig. 4(b), and the upper bounds of the
approximation error for two subdivided conic sections are

dH(c1,b1) ≤ 4.039× 10−14 and dH(c2,b2) ≤ 2.127× 10−14,
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(a) (b)

FIGURE 4. (a) Ellipse (x/3)2+y2 = 1 (magenta color) and four hexic Bézier
approximants (green and blue). The consecutive approximating segments are
plotted by different colors. (b) After the shoulder point subdivision, ellipse
(magenta) and eight hexic Bézier approximants (green and blue).

respectively. The numerical approximation orders are 12.06 and 12.99, respectively. In case
of the full ellipse approximation using four hexic Bézier segments the upper bound is 1.728×
10−10, as shown in Fig. 4(a), and using eight hexic Bézier segments the upper bound is 4.039×
10−14, as shown in Fig. 4(b).

5. CONCLUSION

In this paper we presented a method of conic section approximation by hexic Bézier curves.
The hexic Bézier approximant is G3 Hermite interpolation of the conic section. We showed
that there exists at least one hexic Bézier approximant for each weight of the conic section.
One of the merits of our method is that the hexic Bézier approximant can be obtained by
solving a quartic polynomial, which can be solved algebraically. Our method yields the best
approximation from the four approximation curves. We presented the explicit upper bound of
the Hausdorff distance between the conic section and the hexic Bézier approximant. We also
proved that our approximation method has the maximal order of approximation.
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[16] G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, and E. Žagar. High-order parametric polynomial approximation of
conic sections, Constr. Approx., 38 (2013), 1–18.

[17] H. M. Yoon and Y. J. Ahn. Circular arc approximation by hexic polynomial curves, Comput. Appl. Math., 42
(2023).

[18] Y. J. Ahn. Conic approximation of planar curves, Comput.-Aided Design, 33 (2001), 867–872.
[19] I. Juhász. Gardener’s spline curve, Annales Mathematicae et Informaticae, 47 (2017), 109–118.
[20] A. Sestini, L. Landolfi, and C. Manni. On the approximation order of a space data-dependent PH quintic

Hermite interpolation scheme, Comput. Aided Geom. Design, 30 (2013), 148–158.


