• 제목/요약/키워드: Hemiring

검색결과 7건 처리시간 0.015초

On the Definition of Intuitionistic Fuzzy h-ideals of Hemirings

  • Rahman, Saifur;Saikia, Helen Kumari
    • Kyungpook Mathematical Journal
    • /
    • 제53권3호
    • /
    • pp.435-457
    • /
    • 2013
  • Using the Lukasiewicz 3-valued implication operator, the notion of an (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring is introduced, where ${\alpha},{\beta}{\in}\{{\in},q,{\in}{\wedge}q,{\in}{\vee}q\}$. We define intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of a hemiring R and investigate their various properties. We characterize intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) and (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring R by its level sets. We establish that an intuitionistic fuzzy set A of a hemiring R is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$)-intuitionistic fuzzy left (right) $h$-ideal of R if and only if A is an intuitionistic fuzzy left (right) $h$-ideal with thresholds (0, 1) (or (0, 0.5) or (0.5, 1)) of R respectively. It is also shown that A is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$))-intuitionistic fuzzy left (right) $h$-ideal if and only if for any $p{\in}$ (0, 1] (or $p{\in}$ (0, 0.5] or $p{\in}$ (0.5, 1] ), $A_p$ is a fuzzy left (right) $h$-ideal. Finally, we prove that an intuitionistic fuzzy set A of a hemiring R is an intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of R if and only if for any $p{\in}(s,t]$, the cut set $A_p$ is a fuzzy left (right) $h$-ideal of R.

INTUITIONISTIC(S,T)-FUZZY h-IDEALS OF HEMIRINGS

  • Zhan, Jianming;Shum, K.P.
    • East Asian mathematical journal
    • /
    • 제22권1호
    • /
    • pp.93-109
    • /
    • 2006
  • The concept of intuitionistic fuzzy set was first introduced by Atanassov in 1986. In this paper, we define the intuitionistic(S,T)-fuzzy left h-ideals of a hemiring by using an s-norm S and a t-norm T and study their properties. In particular, some results of fuzzy left h-ideals in hemirings recently obtained by Jun, $\"{O}zt\"{u}rk$, Song, and others are extended and generalized to intuitionistic (S,T)-fuzzy ideals over hemirings.

  • PDF

SOFT INTERSECTION AND SOFT UNION k-IDEALS OF HEMIRINGS AND THEIR APPLICATIONS

  • Anjum, Rukhshanda;Lodhi, Aqib Raza Khan;Munir, Mohammad;Kausar, Nasreen
    • Korean Journal of Mathematics
    • /
    • 제30권2호
    • /
    • pp.263-281
    • /
    • 2022
  • The main aim of this paper is to discuss two different types of soft hemirings, soft intersection and soft union. We discuss applications and results related to soft intersection hemirings or soft intersection k-ideals and soft union hemirings or soft union k-ideals. The deep concept of k-closure, intersection and union of soft sets, ∧-product and ∨-product among soft sets, upper 𝛽-inclusion and lower 𝛽-inclusion of soft sets is discussed here. Many applications related to soft intersection-union sum and soft intersection-union product of sets are investigated in this paper. We characterize k-hemiregular hemirings by the soft intersection k-ideals and soft union k-ideals.

GENERAL TYPES OF (α,β)-FUZZY IDEALS OF HEMIRINGS

  • Jun, Y.B.;Dudek, W.A.;Shabir, M.;Kang, Min-Su
    • 호남수학학술지
    • /
    • 제32권3호
    • /
    • pp.413-439
    • /
    • 2010
  • W. A. Dudek, M. Shabir and M. Irfan Ali discussed the properties of (${\alpha},{\beta}$)-fuzzy ideals of hemirings in [9]. In this paper, we discuss the generalization of their results on (${\alpha},{\beta}$)-fuzzy ideals of hemirings. As a generalization of the notions of $({\alpha},\;\in{\vee}q)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q)$-fuzzy k-ideals, the concepts of $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideals are defined, and their characterizations are considered. Using a left (right) ideal (resp. h-ideal, k-ideal), we construct an $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideal (resp. $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideal, $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideal). The implication-based fuzzy h-ideals (k-ideals) of a hemiring are considered.