• Title/Summary/Keyword: Heavy doping

Search Result 21, Processing Time 0.026 seconds

Heavy Doping Effects and Their Application to $N^+ -P$ Solar Cells (강한 도핑의 효과(Heavy Doping Effects)와 $N^+ -P$태양전지에의 응용)

  • 박성호;김충원;한백형
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.631-639
    • /
    • 1987
  • In this paper, we investigate the heavy doping effects theoretically and model the heavy doping parameters as a function of doping concentration. To apply the heavy doping effects to devices, we also analyze n+ -p solar cells in consideration of these effects and investigate the dependence of open circuit voltage on the emitter design parameters. The heavy doping parameters modeled in this paper are in good agreement with experimental results, and the condition of an emitter in the maximum efficiency of solar cells is obtained from the characterization of it.

  • PDF

Hole-Trapping in Iodine-Doped Pentacene Films at Low Temperatures

  • Yun, W.J.;Cho, J.M.;Lee, J.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.70-73
    • /
    • 2006
  • Pentacene films, grown on polyethylene terephthalate (PET) substrates, were doped with Iodine. ESR measurements were made for the films in the temperature range of 100-300 K. Two regimes of doping stages were discernible: a light (intercalation) doping regime and a heavy doping regime. The light doping regime was concluded to be dominated by localized holes that were trapped at low temperatures, which indicated trap states near the valence band edge.

  • PDF

Selective Emitter Formation of Borosilicate-Glass (BSG) Layer using UV Laser (UV Laser를 이용한 Borosilicate-Glass (BSG)층의 선택적 에미터 형성)

  • Kim, Ga Min;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.727-731
    • /
    • 2021
  • In this study, we have investigated a selective emitter using a UV laser on BBr3 diffusion doping layer. The selective emitter has two regions of high and low doping concentration alternatively and this structure can remove the disadvantages of homogeneous emitter doping. The selective emitters were fabricated by using UV laser of 355 nm on the homogeneous emitters which were formed on n-type Si by BBr3 diffusion in the furnace and the heavy boron doping regions were formed on the laser regions. In the optimized laser doping process, we are able to achieve a highly concentrated emitter with a surface resistance of up to 43 Ω/□ from 105 ± 6 Ω/□ borosilicate glass (BSG) layer on Si. In order to compare the characteristics and confirm the passivation effect, the annealing is performed after Al2O3 deposition using an ALD. After the annealing, the selective emitter shows a better effect than the high concentration doped emitter and a level equivalent to that of the low concentration doped emitter.

Fluorine and Heavy Metal Oxide Effects on Spectral Properties of Tm3+ in Silicate Glasses

  • Cho, Doo-Hee;Seo, Hong-Seok;Park, Bong-Je;Park, Yong-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.725-729
    • /
    • 2003
  • The fluorine doping along with heavy metal oxides remarkably raised the $^3$H$_4$ lifetime and the quantum efficiency in Tm$^{3+}$-doped silicate glasses. 29 mol% of fluorine substitution for oxygen in 70SiO$_2$-15Pbo-12ZnO-3KO$_{1}$2/ glass raised $^3$H$_4$ lifetime to 193 $mutextrm{s}$. Refractive indices were raised by heavy metal oxide substitution, but hardly changed by fluorine substitution. The fluorine doping changed the local structure around Tm$^{3+}$ions, then low energy vibrations related to fluorine are considered to largely reduce the multi-phonon relaxation rates in the oxyfluoride silicate glasses. The $^3$H$_4$ lifetimes and absorption and emission spectra of Tm$^{3+}$doped silicate and oxyfluoride silicate glasses are reported, and Judd-Ofelt calculation results are discussed in this paper.

Study of Ni/Cu Front Metal Contact Applying Selective Emitter Silicon Solar Cells (선택도핑을 적용한 Ni/Cu 전면 전극 실리콘 태양전지에 관한 연구)

  • Lee, JaeDoo;Kwon, Hyukyong;Lee, SooHong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.905-909
    • /
    • 2011
  • The formation of front metal contact silicon solar cells is required for low cost, low contact resistance to silicon surfaces. One of the available front metal contacts is Ni/Cu plating, which can be mass produced via asimple and inexpensive process. A selective emitter, meanwhile, involves two different doping levels, with higher doping (${\leq}30{\Omega}/sq$) underneath the grid to achieve good ohmic contact and low doping between the grid in order to minimize the heavy doping effect in the emitter. This study describes the formation of a selective emitter and a nickel silicide seed layer for the front metallization of silicon cells. The contacts were thickened by a plated Ni/Cu two-step metallization process on front contacts. The experimental results showed that the Ni layer via SEM (Scanning Electron Microscopy) and EDX (Energy dispersive X-ray spectroscopy) analyses. Finally, a plated Ni/Cu contact solar cell displayed efficiency of 18.10% on a $2{\times}2cm^2$, Cz wafer.

A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment (비정질 및 단결정 실리콘에서 10~50 keV 에너지로 주입된 안티몬 이온의 분포와 열적인 거동에 따른 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.683-689
    • /
    • 2015
  • For the formation of $N^+$ doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a $SiO_2/Si$ is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert $N_2$ gas and dry oxidation.

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around $1,000^{\circ}C$ doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of $SiH_4:B_2H_6:H_2$=30:30:120, at $200^{\circ}C$, 50 W power, 0.2 Torr for 30 min. $20\;mm\;{\times}\;20\;mm$ size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, $980^{\circ}C$ for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the $p^+$ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as $100\;{\omega}/sq.$ and $11.8\;{\mu}s$ vs. $17\;{\omega}/sq.$ and $8.2\;{\mu}s$. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF

Research of Heavily Selective Emitter Doping for Making Solar Cell by Using the New Atmospheric Plasma Jet (새로운 대기압 플라즈마 제트를 이용한 태양전지용 고농도 선택적 도핑에 관한 연구)

  • Cho, I Hyun;Yun, Myung Soo;Son, Chan Hee;Jo, Tae Hoon;Kim, Dong Hea;Seo, Il Won;Rho, Jun Hyoung;Jeon, Bu Il;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2013
  • Doping process using laser is an important process in fabrication of solar cell for heat treatment. However, the process of using the furnace is difficult to form a selective emitter doping region. The case of using a selective emitter laser doping is required an expensive laser equipment and induce the wafer's structure damage due to high temperature. This study, we fabricated a new costly plasma source. Through this, we research the selective emitter doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (a few tens kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer. Atmospheric plasma treatment time was 15 s and 30 s, and current for making the plasma is 40 mA and 70 mA. We investigated a doping profile by using SIMS (Secondary Ion Mass Spectroscopy) and we grasp the sheet resistance of electrical character by using doping profile. As result of experiment, prolonged doping process time and highly plasma current occur a deeper doping depth, moreover improve sheet resistance. We grasped the wafer's surface damage after atmospheric pressure plasma doping by using SEM (Scanning Electron Microscopy). We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

Phosphorus doping in silicon thin films using a two - zone diffusion method

  • Hwang, M.W.;Um, M.Y.;Kim, Y.H.;Lee, S.K.;Kim, H.J.;Park, W.Y.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.3
    • /
    • pp.73-77
    • /
    • 2000
  • Single crystal and polycrystalline Si thin films were doped with phosphorus by a 2-zone diffusion method to develop the low-resistivity polycrystalline Si electrode for a hemispherical grain. Solid phosphorus source was used in order to achieve uniformly and highly doped surface region of polycrystalline Si films having rough surface morphology. In case of 2-zone diffusion method, it is proved that the heavy doping near the surface area can be achieved even at a relatively low temperature. SIMS analysis revealed that phosphorus doping concentration in case of using solid P as a doping source was about 50 times as that of phosphine source at 750$^{\circ}C$. Also, ASR analysis revealed that the carrier concentration was about 50 times as that of phosphine. In order to evaluate the electrical characteristics of doped polycrystalline Si films for semiconductor devices, MOS capacitors were fabricated to measure capacitance of polycrystalline Si films. In ${\pm}$2 V measuring condition, Si films, doped with solid source, have 8% higher $C_{min}$ than that of unadditional doped Si films and 3% higher $C_{min}$ than that of Si films doped with $PH_3$ source. The leakage current of these films was a few fA/${\mu}m^2$. As a result, a 2-zone diffusion method is suggested as an effective method to achieve highly doped polycrystalline Si films even at low temperature.

  • PDF