• Title/Summary/Keyword: Heat index

Search Result 863, Processing Time 0.023 seconds

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

Study on the Operation Characteristics of Heat Detectors through Fire and Wind Tunnel Experiment (풍동실험과 화재실험을 통한 열감지기의 동작특성에 관한 연구)

  • Ryu, Hocheol;Kim, Doohyun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • The heat detector detects heat in the fire and is an important core element of the automatic fire alarm system used generally for every fire prevention objects. The heat detector is distinguished in spot type and spread type and in spot type, there are differential and thermistor types. These heat detectors give a great influence on the loss of people and property according to the sensitivity of response such as operation time and operation temperature in actual fire and in overseas people apply it for the development of products that can be operated in the early stage of fire including certification, quality management, and comparison standard by introducing response time index through the theory of heat balance that considers the heat loss and ventilation tests. In Korea, the response time index is introduced and used in the head of sprinkler products, but it is not applied to the heat detector at present. It is necessary to introduce the response time index that shows the sensitivity of response of the heat detector the installation standard for the heat detector that the response time index is applied should be different according to the fire weight, danger degree of fire, and shape of buildings. Through this study, it tries to help reduce lives and property of people through the swift warning by installing detectors suitable for the building structure.

Performance Characteristics of Refrigerant R170(Ethane) Refrigeration System Using Liquid-gas Heat Exchanger (액-가스 열교환기를 이용한 R170(에탄)용 냉동시스템의 성능 특성)

  • Ku, Hak-Keun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.78-85
    • /
    • 2016
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system using R170. These liquid-gas heat exchangers(internal or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. Exception for the effect of inner diameter, the RCI of R170 with respect to refrigerant mass flowrate, the length and effectiveness of internal heat exchanger is about 2.1~3.3% higher than that of R13 at the same experimental conditions. With a thorough grasp of these effect, it is necessary to design the R170 compression refrigeration cycle using internal heat exchanger.

Heat transfer characteristics of an internal cooling channel with pin-fins and ribbed endwalls in gas turbine blade

  • Vu T.A. Co;Hung C. Hoang;Duy C.K. Do;Son H. Truong;Diem G. Pham;Nhung T.T. Le;Truong C. Dinh;Linh T. Nha
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.2
    • /
    • pp.153-175
    • /
    • 2024
  • In jet engines, turbine blade cooling has an extremely important role. The pin-fin array, which is situated close to the trailing edge of the blade, aids in internal cooling of the gas turbine blades and preserves the structural integrity of the blade. Previous studies often focused on pin-fin configurations, but the current research focuses on improving the geometry at the endwalls to reduce wake vortices behind the pin-fins and enhance heat transfer at the endwalls location. Using the k-ω turbulence model, a numerical study was conducted on a ribbed shape situated on the walls between pin-fin arrays, spanning a Reynolds number range of 7400 to 36000, in order to determine the heat transport characteristics. The heat transfer efficiency coefficient and Nusselt number increase dramatically with the revised wall configuration, according to the numerical data. The channel's heat transfer efficiency is increased by enlarging the heat transfer areas near the pin-fins and by the interaction of the flow with the endwalls. The addition of ribs causes the Nusselt number of the new model to climb from 78% to 96% at the previously given Reynolds numbers, and the heat transfer efficiency index to rise from 60% to 73%. The height (Hr), position (Lr), forward width (Wf), and backward width (Wb) of the ribs are among the geometric elements that were looked at in order to determine how they affected the performance of heat transmission. In comparison to the reference design, the parametric study results demonstrate that the best forward width (Wf/R=18.75%) and backward width (Wb/R=31.25%) increase the heat transfer efficiency index by 0.4% and 1.3%, respectively.

Characteristics of LED Lighting Device Using Heat Sinks of 7.5 W CMP-PLA (7.5 W CMP-PLA 방열판을 적용한 LED 등기구 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.920-923
    • /
    • 2013
  • In this paper, the characteristics of a carbon nanotube composite heat sink proposed to replace the advanced Al heat sinks for LED lighting devices were studied. Proposed CMP-PLA heat sink was made by mixing 20~70 wt% carbon nanotube, 20~70 wt% bio-degradable polymer of melt-blended PLA (poly lactic acid) and PBS (poly butylene succinate) and PLA nucleating agents composed of the mixture of soybean oil and biotites, at $150{\sim}220^{\circ}C$ with 1,000~1,500 rpm. Optical and electric characteristics of 7.5 W LED lighting devices using heat sinks with such prepared CMP-PLA were investigated. And, the properties of the heat, which was not released from the CMP-PLA type heat sinks, was also investigated. The color temperature of LED lighting devices using the CMP-PLA heat sinks was 5,956 K, which is x= 0.32 and y= 0.34 in the XY chromaticity, and the color rendering index was 75. The luminous flux and the luminous efficiency of LED lighting devices using the CMP-PLA heat sinks was 540.6 lm and 72.68 lm/W respectively. Measured initial temperature of the heat sinks was $27^{\circ}C$, and their temperature increased as time to be saturated at $52^{\circ}C$ after an hour.

Performance Comparison of a Welded Plate Heat Exchanger and Shell and Tube Heat Exchanger with Same Heat Transfer Area (동일 전열면적을 갖는 용접식 판형열교환기와 관류형 열교환기의 성능 비교)

  • Ham, Jeonggyun;Kim, Min-Jun;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.46-54
    • /
    • 2019
  • In this study, the performance of a shell and tube heat exchanger (STHE) and welded plate heat exchanger (WPHE) was measured experimentally. The pass numbers of the STHE was changed by 1, 2 and 4. As a result, the WPHE showed 2.1 times higher heat exchange capacity than that of the STHE. In case of pressure drop, the STHE with 1 and 2 pass number has a lower pressure drop than the WPHE, while the STHE with 4 pass presented higher pressure drop than the WPHE. The performance index considering the heat exchange capacity and pump consumption power, showed in oder of STHEPass1 > STHEPass2 > W PHE > STHEPass4 under the same flow rate. Therefore, when the WPHE was designed optimally under same operating condition with STHE, the maintenance fee and space can be reduced effectively by using the WPHE.

Heat and Flow Analysis Inside a Parallel-Flow Heat Exchanger (평행류 열교환기 내부의 열유동 해석)

  • Oh, Seok-Jin;Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.781-788
    • /
    • 2003
  • In the present study, the heat and flow characteristics of a parallel-flow heat exchanger are numerically analyzed by using three-dimensional turbulent modeling. Heat transfer rate and pressure drop are evaluated using the concept of the efficiency index by varying the locations, the shapes and angles of inlet/outlet, and the protrusion height of flat tube. It is found that negative angle of the inlet improves the heat transfer rate and pressure drop. Results show that the locations of the inlet and outlet should be toward the right side and the left side to the reference model, respectively, in order to enhance the heat transfer rate and pressure drop. Increasing the height of the lower header causes pressure drop to decrease and yields the good flow characteristics. The lower protrusion height of flat tube shows the improvement of the heat transfer rate and pressure drop. The heat transfer rate is greatly affected by the parameters of outlet side such as the location and angle of the outlet. However, the pressure drop is influenced by the parameters of inlet side such as the location and angle of inlet and the height of the header.

A Study on Effect of Specimen Thickness and Curing Temperature on Properties of Low Heat Concrete by Analysis Program for Heat of Hydration (수화열 해석 프로그램에 의한 저발열 콘크리트의 특성에 미치는 부재두께 및 양생온도의 영향에 관한 연구)

  • Lee, Seung-Min;Rho, Hyoung-Nam;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.31-36
    • /
    • 2008
  • This study aims to examine the effects of thickness of the concrete members and curing temperature on the properties of low heat concrete through heat of hydration analysis. Type of the members that was analyzed in the experiment is ternary mixture of ordinary portland cement, blast-furnace slag incorporating ratio(20%) and fly ash incorporating ratio(30%), which formed a mat foundation. Thicknesses of the concrete members were 1, 2 and 3(m) and three levels of curing temperatures were 10, 20 and 30(℃). They were applied to analyze the effects on the temperature and thermal cracking index. As a result, for temperature history, temperature difference between the central area and the surface tended to decrease as the thickness of the concrete members get thinner. For the temperature cracking index, on the other hand, the risk of cracking tended to decrease as the curing temperature gets higher and as the thickness gets thinner.

  • PDF

Effects of Land Cover Change on Summer Urban Heat Island Intensity and Heat Index in Seoul Metropolitan Area, Korea (서울 수도권 지역의 토지 피복 변화가 여름철 도시열섬 강도와 체감온도에 미치는 영향)

  • Hong, Seon-Ok;Byon, Jae-Young;Kim, Do-Hyeong;Lee, Sang-Sam;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.143-156
    • /
    • 2021
  • This study investigates the impacts of land cover change due to urbanization on the Urban Heat Island Intensity (UHII) and the Heat Index (HI) over the Seoul metropolitan area using the Unified Model (UM) with the Met Office Reading Urban Surface Exchange Scheme (MORUSES) during the heat wave from 16, July to 5, August 2018. Two simulations are performed with the late 1980s land-use (EXP1980) and the late 2000s land-use (EXP2000). EXP2000 is verified using Automatic Weather Station (AWS) data from 85 points in the study area, and observation sites are classified into two categories according to the urban fraction change over 20 years; Category A is 0.2 or less increase, and Category B is 0.2 or more increase. The 1.5-m temperature and relative humidity in Category B increase by up to 1.1℃ and decreased by 7% at 1900 LST and 2000 LST, respectively. This means that the effect of the urban fraction changes is higher at night. UHII increases by up to 0.3℃ in Category A and 1.3℃ in Category B at 1900 LST. Analysis of the surface energy balance shows that the heat store for a short time during the daytime and release at nighttime with upward sensible heat flux. As a result of the HI, there is no significant difference between the two experiments during the daytime, but it increases 1.6℃ in category B during the nighttime (2200 LST). The results indicate that the urbanization increase both UHII, and HI, but the times of maximum difference between EXP1980 and EXP2000 are different.

Response Time Index and Operation Time of Fixed Temperature Heat Detector (정온식 열감지기의 응답시간지수 및 작동시간)

  • 류호철;태순호;이병곤
    • Fire Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 1993
  • Fixed temperature heat detectors that respond to the heat generated in fire plume and alarm when the temperature reaches a specified point, give a great influences to the loss of life and property according to their reaction sensitivity. In this study, hot wind tunnel tests and compartment fire experiments were performed to investigate the response time and temperature of fixed temperature heat detector. As a result, simple equations were derived which can be predicted the response time and temperature of the fixed temperature heat detector for the ramp type fire. Also other useful data, such as the effective temperature, time constant, response time index(RTI) were obtained.

  • PDF