DOI QR코드

DOI QR Code

Effects of Land Cover Change on Summer Urban Heat Island Intensity and Heat Index in Seoul Metropolitan Area, Korea

서울 수도권 지역의 토지 피복 변화가 여름철 도시열섬 강도와 체감온도에 미치는 영향

  • Hong, Seon-Ok (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Byon, Jae-Young (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Do-Hyeong (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Lee, Sang-Sam (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Yeon-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
  • 홍선옥 (국립기상과학원 미래기반연구부) ;
  • 변재영 (국립기상과학원 미래기반연구부) ;
  • 김도형 (국립기상과학원 미래기반연구부) ;
  • 이상삼 (국립기상과학원 미래기반연구부) ;
  • 김연희 (국립기상과학원 미래기반연구부)
  • Received : 2021.01.04
  • Accepted : 2021.03.20
  • Published : 2021.06.30

Abstract

This study investigates the impacts of land cover change due to urbanization on the Urban Heat Island Intensity (UHII) and the Heat Index (HI) over the Seoul metropolitan area using the Unified Model (UM) with the Met Office Reading Urban Surface Exchange Scheme (MORUSES) during the heat wave from 16, July to 5, August 2018. Two simulations are performed with the late 1980s land-use (EXP1980) and the late 2000s land-use (EXP2000). EXP2000 is verified using Automatic Weather Station (AWS) data from 85 points in the study area, and observation sites are classified into two categories according to the urban fraction change over 20 years; Category A is 0.2 or less increase, and Category B is 0.2 or more increase. The 1.5-m temperature and relative humidity in Category B increase by up to 1.1℃ and decreased by 7% at 1900 LST and 2000 LST, respectively. This means that the effect of the urban fraction changes is higher at night. UHII increases by up to 0.3℃ in Category A and 1.3℃ in Category B at 1900 LST. Analysis of the surface energy balance shows that the heat store for a short time during the daytime and release at nighttime with upward sensible heat flux. As a result of the HI, there is no significant difference between the two experiments during the daytime, but it increases 1.6℃ in category B during the nighttime (2200 LST). The results indicate that the urbanization increase both UHII, and HI, but the times of maximum difference between EXP1980 and EXP2000 are different.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「수요자 맞춤형 기상정보 산출기술개발 연구」(KMA2018-00622)의 지원으로 수행되었습니다.

References

  1. Basara, J. B., H. G. Basara, B. G. Illston, and K. C. Crawford, 2010: The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteorol., 2010, 230365, doi:10.1155/2010/230365.
  2. Best, M J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.- Layer Meteor., 114, 91-109. https://doi.org/10.1007/s10546-004-4834-5
  3. Best, M J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
  4. Bhati, S., and M. Mohan, 2018: WRF-urban canopy model evaluation for the assessment of heat island and thermal comfort over an urban airshed in India under varying land use/land cover conditions. Geosci. Lett., 5, 27, doi:10.1186/s40562-018-0126-7.
  5. Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Q. J. R. Meteorol. Soc., 137, 1625-1640, doi:10.1002/qj.855.
  6. Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273-288, doi:10.1002/joc.2158.
  7. Chen, F., X. Yang, and W. Zhu, 2014: WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res., 138, 364-377, doi:10.1016/j.atmosres.2013.12.005.
  8. Conti, S., P. Meli, G. Minelli, R. Solimini, V. Toccaceli, M. Vichi, C. Beltrano, and L. Perini, 2005: Epidemiologic study of mortality during the summer 2003 heat wave in Italy. Environ. Res., 98, 390-399. https://doi.org/10.1016/j.envres.2004.10.009
  9. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759-1782. https://doi.org/10.1256/qj.04.101
  10. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc., 122, 689-719. https://doi.org/10.1002/qj.49712253107
  11. Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: local-scale observations and evaluation of a simple model. J. Appl. Meteor. Climatol., 38, 922-240. https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2
  12. Grover, A., and R. B. Singh, 2015: Analysis of urban heat island (UHI) in relation to normalized difference vegetation index (NDVI): A comparative study of Delhi and Mumbai. Environments, 2, 125-138, doi:10.3390/environments2020125.
  13. Hong, J.-W., J. Hong, S.-E. Lee, and J. Lee, 2013: Spatial distribution of Urban Heat Island based on local climate zone of automatic weather station in Seoul metropolitan area. Atmosphere, 23, 413-424, doi:10.14191/Atmos.2013.23.4.413 (in Korean with English abstract).
  14. Hong, J.-W., J. Hong, E. E. Kwon, and D. K. Yoon, 2019: Temporal dynamics of urban heat island correlated with the socio-economic development over the past halfcentury in Seoul, Korea. Environ. Pollut., 254, 112934. https://doi.org/10.1016/j.envpol.2019.07.102
  15. Hong, S.-O., J.-Y. Byon, H. Park, Y.-G. Lee, B.-J. Kim, and J.-C. Ha, 2018: Sensitivity analysis of near surface air temperature to land cover change and urban parameterization scheme using Unified Model. Atmosphere, 28, 427-441, doi:10.14191/Atmos.2018.28.4.427 (in Korean with English abstract).
  16. Kanda, M., T. Kawai, M. Kanega, R. Morinaga, K. Narita, and A. Hagishima, 2005: A simple energy balance model for regular building arrays. Bound.-Layer Meteor., 116, 423-443. https://doi.org/10.1007/s10546-004-7956-x
  17. Kim, Y.-H., and J.-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteor. Climatol., 41, 651-659. https://doi.org/10.1175/1520-0450(2002)041<0651:MUHIII>2.0.CO;2
  18. Kim, Y.-H., and J.-J. Baik, 2005: Spatial and temporal structure of the Urban Heat Island in Seoul. J. Appl. Meteor. Climatol., 44, 591-605. https://doi.org/10.1175/JAM2226.1
  19. Kim, J.-C., C.-B. Lee, T.-H. Cheon, and Y.-J. Jang, 2010: A study about the impact of atmospheric environmental changes by urban development on human health. J. Environ. Imp. Assess., 19, 15-28 (in Korean with English abstract).
  20. Kim, H., H.-B. Seok, and Y.-K. Kim, 2014: A study on the change of the urban heat island structure in Busan metropolitan area, Korea. J. Environ. Sci. Int., 23, 1807-1820, doi:10.5322/JESI.2014.23.11.1807 (in Korean with English abstract).
  21. Kim, D., and S.-K. Song, 2016: Analyzing the relationships between land cover type and sensible temperature in urban heat wave. J. Korea Planning Assoc., 51, 137-152, doi:10.17208/jkpa.2016.02.51.1.137 (in Korean with English abstract).
  22. Kusaka, H., H. Kondo, Y, Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329-358. https://doi.org/10.1023/A:1019207923078
  23. Lee, H.-J., K.-O. Lee, G.-M. Won, and H.-W. Lee, 2009: Application of the latest land use data for numerical simulation of urban thermal environment in the Daegu. J. Korean Soc. Atmos. Environ., 25, 196-210 (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2009.25.3.196
  24. Lee, C.-B., J.-C. Kim, and Y.-J. Jang, 2012: A study of Urban Heat Island in Chuncheon using WRF model and field measurements. J. Korean Soc. Atmos. Environ., 28, 119-130 (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2012.28.2.119
  25. Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
  26. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357-397. https://doi.org/10.1023/A:1002463829265
  27. Moon, Y.-S., and Y.-S. Koo, 2006: A study on examples applicable to numerical land cover map data for atmospheric environment fields in the metropolitan area of Seoul - Real time calculation of biogenic CO2 flux and VOC emission due to a geographical distribution of vegetable and analysis on sensitivity of air temperature and wind field within MM5 -. J. Korean Soc. Atmos. Environ., 22, 661-678 (in Korean with English abstract).
  28. Oke, T. R., 1982: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc., 108, 1-24. https://doi.org/10.1002/qj.49710845502
  29. Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 546 pp.
  30. Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: formulation and evaluation for Two cities. J. Appl. Meteor. Climatol., 47, 1038-1060. https://doi.org/10.1175/2007JAMC1597.1
  31. Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010a: Implementation of a new urban energy budget scheme in the MetUM. Part I: Description and idealized simulations. Q. J. R. Meteorol. Soc., 136, 1514-1529, doi:10.1002/qj.668.
  32. Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010b: Implementation of a new urban energy budget scheme into MetUM. Part II: Validation against observations and model intercomparison. Q. J. R. Meteorol. Soc., 136, 1530-1542, doi:10.1002/qj.572.
  33. Rizwan, A. M., L. Y. Dennis, and C. Liu, 2008: A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci., 20, 120-128. https://doi.org/10.1016/S1001-0742(08)60019-4
  34. Schoen, C., 2005: A new empirical model of the temperature-humidity index. J. Appl. Meteor. Climatol., 44, 1413-1420. https://doi.org/10.1175/JAM2285.1
  35. Steadman, R. G., 1979: The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteor. Climatol., 18, 861-873. https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2
  36. Stone, B., 2012: The city and the coming climate: Climate change in the places we live. Cambridge University Press, 206 pp.
  37. Uejio, C. K., O. V. Wilhelmi, J. S. Golden, D. M. Mills, S. P. Gulino, and J. P. Samenow, 2011: Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place, 17, 498-507, doi:10.1016/j.healthplace.2010.12.005.
  38. UN, 2018: World Urbanization Prospects: The 2018 Revision. United Nations, 103 pp [Available online at https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf].
  39. Unnikrishnan, C. K., B. Gharai, S. Mohandas, A. Mamgain, E. N. Rajagopal, G. R. Iyenger, and P. V. N. Rao, 2016: Recent changes on land use/land cover over Indian region and its impact on the weather prediction using Unified model. Atmos. Sci. Lett., 17, 294-300. https://doi.org/10.1002/asl.658
  40. Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Q. J. R. Meteorol. Soc., 129, 1989-2010. https://doi.org/10.1256/qj.02.133
  41. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc., 125, 1607-1636. https://doi.org/10.1002/qj.49712555707
  42. Yang, B., X. Yang, L. R. Leung, S. Zhong, Y. Qian, C. Zhao, F. Chen, Y. Zhang, and J. Qi, 2019: Modeling the impacts of urbanization on summer thermal comfort: The role of urban land use and anthropogenic Heat. J. Geophys. Rev. Atmos., 124, 6681-6697, doi: 10.1029/2018JD029829.
  43. Zhou, X., and H. Chen, 2018: Impact of urbanizationrelated land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ., 635, 1467-1476, doi:10.1016/j.scitotenv.2018.04.091.