• Title/Summary/Keyword: Healthcare Device

Search Result 375, Processing Time 0.025 seconds

Simulation Studies for Noninvasive Optical Measurements of Blood-Scattering Changes in a Skin Model with a Large Blood Vessel

  • Zephaniah, Phillips V;Paik, Seung-ho;Nam, Jungyong;Chang, Ki Young;Jung, Young-Jin;Choi, Youngwoon;Lee, Joonhyung;Kim, Beop Min
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 2019
  • Monte Carlo simulations were performed for a three-dimensional tissue model with and without an embedded large vessel, to understand how varying vessel geometry affects surface light distribution. Vessel radius was varied from 1 to 5 mm, and vessel depth from 2 to 10 mm. A larger difference in surface fluence rate was observed when the vessel's radius increased. For vessel depth, the largest difference was seen at a depth of approximately 4 mm, corresponding to human wrist region. When the vessel was placed at depths greater than 8 mm, very little difference was observed. We also tested the feasibility of using two source-detector pairs, comprising two detectors distinctly spaced from a common source, to noninvasively measure blood-scattering changes in a large vessel. High sensitivity to blood-scattering changes was achieved by placing the near detector closer to the source and moving the far detector away from the source. However, at longer distances, increasing noise levels limited the sensitivity of the two-detector approach. Our results indicate that the approach using two source-detector pairs may have potential for quantitative measurement of scattering changes in the blood while targeting large vessels near the human wrist region.

A Design of Electronic Health Records Partial Encryption Method for Protecting Patient's Information on the U-Healthcare Environment (U-Healthcare 환경에서 환자정보보호를 위한 전자차트 부분 암호화 기법 설계)

  • Shin, Seon Hee;Kim, Hyun Chul;Park, Chan Kil;Jeon, Moon Seog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.91-101
    • /
    • 2010
  • By using the U-Healthcare environment, it is possible to receive the health care services anywhere anytime. However, since the user's personal information can be easily exposed in the U-Healthcare environment, it is necessary to strengthen the security system. This thesis proposes the technique which can be used to protect the personal medical records at hospital safely, in order to avoid the exposure of the user's personal information which can occur due to the frequent usage of the electronic chart according to the computerization process of medical records. In the proposed system, the following two strategies are used: i) In order to reduce the amount of the system load, it is necessary to apply the partial encryption process for electronic charts. ii) Regarding the user's authentication process for each patient, the authentication number for each electronic chart, which is in the encrypted form, is transmitted through the patient's mobile device by the National Health Insurance Corporation, when the patient register his or her application at hospital. Regarding the modern health care services, it is important to protect the user's personal information. The proposed technique will be an important method of protecting the user's information.

Addressing Concurrency Design for HealthCare Web Service Gateway in Remote Healthcare Monitoring System

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.32-39
    • /
    • 2016
  • With the help of a small wearable device, patients reside in an isolated village need constant monitoring which may increase access to care and decrease healthcare delivery cost. As the number of patients' requests increases in simultaneously manner, the web service gateway located in the village hall encounters limitations for performing them successfully and concurrently. The gateway based RESTful technology responsible for handling patients' requests attests an internet latency in case a large number of them submit toward the gateway increases. In this paper, we propose the design tasks of the web service gateway for handling concurrency events. In the procedure of designing tasks, concurrency is best understood by employing multiple levels of abstraction. The way that is eminently to accomplish concurrency is to build an object-oriented environment with support for messages passing between concurrent objects. We also investigate the performance of event-driven architecture for building web service gateway using node.js. The experiments results show that server-side JavaScript with Node.js and MongoDB as database is 40% faster than Apache Sling. With Node.js developers can build a high-performance, asynchronous, event-driven healthcare hub server to handle an increasing number of concurrent connections for Remote Healthcare Monitoring System in an isolated village with no access to local medical care.

A Portable IoT-cloud ECG Monitoring System for Healthcare

  • Qtaish, Amjad;Al-Shrouf, Anwar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.269-275
    • /
    • 2022
  • Public healthcare has recently become an issue of great importance due to the exponential growth in the human population, the increase in medical expenses, and the COVID-19 pandemic. Speed is one of the crucial factors in saving life, particularly in case of heart attack. Therefore, a healthcare device is needed to continuously monitor and follow up heart health conditions remotely without the need for the patient to attend a medical center. Therefore, this paper proposes a portable electrocardiogram (ECG) monitoring system to improve healthcare for heart attack patients in both home and ambulance settings. The proposed system receives the ECG signals of the patient and sends the ECG values to a MySQL database on the IoT-cloud via Wi-Fi. The signals are displayed as an ECG data chart on a webpage that can be accessed by the patient's doctor based on the HTTP protocol that is employed in the IoT-cloud. The proposed system detects the ECG data of the patient to calculate the total number of heartbeats, number of normal heartbeats, and the number of abnormal heartbeats, which can help the doctor to evaluate the health status of the patient and decide on a suitable medical intervention. This system therefore has the potential to save time and life, but also cost. This paper highlights the five main advantages of the proposed ECG monitoring system and makes some recommendations to develop the system further.

Current Status, Development Trends and Implications of Digital Therapeutics (DTx) (디지털 치료기기의 현황 및 개발 동향과 시사점)

  • S.H. Lee;M.H. Bae
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.73-81
    • /
    • 2024
  • As the demand for a healthy life increases and the use of information technology expands, interest in digital healthcare has increased. Among the digital healthcare technologies, digital therapeutics (DTx), which are capable of disease prevention, management, and treatment rather than simple healthcare, are expected to play a key role in future healthcare services. As interest in untact remote treatment that can minimize the risk of viral infection has rapidly increased since the spread of COVID-19, the application of DTx has received much attention because it can partially replace face-to-face treatment for mental illnesses, chronic diseases, and other diseases, reducing concerns about infection. In addition, because of the nature of software, DTx have lower toxicity and fewer side effects than existing treatments and do not require manufacturing, transportation, and storage like general medicines. Hence, they can be supplied in large quantities at low cost and have the advantage of lowering medical costs. However, despite these advantages, it has been pointed out that there are difficulties in investment and universal use because of the complexity of pricing and malpractice compensation. In other words, if it is difficult to prove and measure the improvements in disease management and treatment using DTx and it takes a considerable amount of time and money to do so, it will be difficult to attract investment from stakeholders such as medical providers and pharmaceutical companies. In this paper, we examine the domestic and global application status and development trends of DTx and determine the relevant implications.

RFID-based Authentication Protocol for Implantable Medical Device (체내삽입장치에 RFID 기술을 적용한 인증 프로토콜)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.141-146
    • /
    • 2012
  • U-healthcare, which grafted advanced IT technology onto medical technology, is in the limelight because it can provide medical services at anytime and anywhere. U-healthcare system applied RFID technology for Implantable Medical Device (IMD), but patient's biometric information can be easily exposed to third parties. In this article, RFID-based U-healthcare authentication protocol is proposed to prevent illegal usage for personal biometric information exposed to the third patty. The proposed protocol guarantees patients' biometric information integrity as compounding random numbers between administrators and hospital/clinic managers, and uses continuous number SEQ and time stamp T to synchronize IMD/administrators and administrators/hospital managers. Also, to protect user's privacy from the third party, patients' biometric information can be safely guarded by managing patients' security identifiers by administrators.

A Study on the Factors Affecting the Purchase of Healthcare Smart Bands (헬스 케어 스마트 밴드 구매에 영향을 미치는 요인에 관한 연구)

  • Choi, Seong-Hun;Kim, Seung-In
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.175-181
    • /
    • 2017
  • The purpose of this study is to investigate what factors buyers buy in smart band purchasing. Especially, The study was conducted the perception of smart bands, focusing on personal healthcare, which is one of the biggest concern of today's people, and investigating the needs of users. SmartBand is the product with the highest market share in the wearable device market. It is an indicator of how much modern people are interested in their healthcare. Therefore, this study investigates non-users who are not currently using smart bands, and what factors to consider when buying smart bands. As a result, it was found that the design of the product and the hardware performance are more important than the smart band's personal health care function in purchasing the smart band, and fundamentally, the smart band itself was not needed. Especially, people aged 20-30 years have been burdened with using smart bands continuously.

Design of Filter to Remove Motion Artifacts of Photoplethysmography Signal Using Adaptive Notch Filter and Fuzzy Inference system (적응 노치필터와 퍼지추론 시스템을 이용한 광용적 맥파 신호의 동잡음 제거 필터 설계)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.45-50
    • /
    • 2019
  • When PPG signal is used in mobile healthcare devices, the accuracy of the measured heartbeat decreases from the influence by the movement of the user. The reason is that the frequency band of the noise overlaps the frequency band of the PPG signal. In order to remove these same noises, the methods using frequency analysis method or application of acceleration sensor have been investigated and showed excellent performance. However, in applying these methods to low-cost healthcare devices, it is difficult to apply these methods because of much processing time and sensor's cost. In order to solve these problems, this study proposed the filter design method using an adaptive notch filter and the fuzzy inference system to extract more accurate heart rate in real time and evaluated its performance. As results, it showed better results than the other methods. Based on the results, when applying the proposed method to design the mobile healthcare device, it is possible to measure the heartbeat more accurately in real time.

An Analysis of Cognitive Ability and Technology Acceptance Behavior for the Elderly : Towards the Use of Wearable Healthcare Devices (시니어 인지능력과 신기술 수용 행태 분석 : 웨어러블 디바이스 사용의도를 중심으로)

  • Park, Ji Hye;Moon, Jae Yun;Kim, Jinwoo;Kim, Geon Ha;Kim, Bori R.;Bae, Hyun A;Hong, Se-Joon
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.1
    • /
    • pp.21-38
    • /
    • 2019
  • This study starts from the question, "Are people of the age 60 and over equally 'old?' "As the aging population has rapidly become a global issue, it is a timely question to think about whether it is appropriate to classify people aged 60 and over as senior citizens monolithically based on their chronological age. Thanks to the advancement of medical technology and ever-increasing life expectancy, there may be more differences than we thought in terms of cognitive and behavioral patterns among the elderly population. In order to further investigate this question, this study focuses on technology acceptance behavior of 132 participants over the age of 60 towards a wearable healthcare device. The results show that there were interesting behavioral differences among participants depending on their cognitive capabilities. More specifically, participants with high cognitive capability (Superagers) consider the usefulness and the social aspects (social norm and image) of using wearable healthcare technology. Whereas for those with relatively low cognitive capability (non-Superagers), usefulness of using the technology was not a significant factor, and they mainly considered social norm and image. Our findings imply that the current monolithic application of chronological age to classify the elderly population should be carefully reconsidered because people aged over 60 years old may not always share homogeneous cognitive and behavioral patterns.

Designing a Healthcare Service Model for IoB Environments (IoB 환경을 위한 헬스케어 서비스 모델 설계)

  • Jeong, Yoon-Su
    • Journal of Digital Policy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • Recently, the healthcare field is trying to develop a model that can improve service quality by reflecting the requirements of various industrial fields. In this paper, we propose an Internet of Behavior (IoB) environment model that can process users' healthcare information in real time in a 5G environment to improve healthcare services. The purpose of the proposed model is to analyze the user's healthcare information through deep learning and then check the health status in real time. In this case, the biometric information of the user is transmitted through communication equipment attached to the portable medical equipment, and user authentication is performed through information previously input to the attached IoB device. The difference from the existing IoT healthcare service is that it analyzes the user's habits and behavior patterns and converts them into digital data, and it can induce user-specific behaviors to improve the user's healthcare service based on the collected data.