
International Journal of Advanced Smart Convergence Vol.5 No3 32-39 (2016)

http://dx.doi.org/10.7236/IJASC.2016.5.3.32

Addressing Concurrency Design for HealthCare Web Service Gateway in

Remote Healthcare Monitoring System

Lionel Nkenyereye, Jong-Wook Jang†

†
Department of Computer Engineering, Dong-Eui University,

176 Eomgwangro, Busanjin-Gu, Busan, 614-714, Korea

e-mail: lionelnk82@gmail.com, jwjang@deu.ac.kr

Abstract

With the help of a small wearable device, patients reside in an isolated village need constant monitoring

which may increase access to care and decrease healthcare delivery cost. As the number of patients’

requests increases in simultaneously manner, the web service gateway located in the village hall encounters

limitations for performing them successfully and concurrently. The gateway based RESTful technology

responsible for handling patients’ requests attests an internet latency in case a large number of them submit

toward the gateway increases. In this paper, we propose the design tasks of the web service gateway for

handling concurrency events. In the procedure of designing tasks, concurrency is best understood by

employing multiple levels of abstraction. The way that is eminently to accomplish concurrency is to build an

object-oriented environment with support for messages passing between concurrent objects. We also

investigate the performance of event-driven architecture for building web service gateway using node.js. The

experiments results show that server-side JavaScript with Node.js and MongoDB as database is 40% faster

than Apache Sling. With Node.js developers can build a high-performance, asynchronous, event-driven

healthcare hub server to handle an increasing number of concurrent connections for Remote Healthcare

Monitoring System in an isolated village with no access to local medical care.

Key words: concurrent application; asynchronous I/O; server-side JavaScript; web service gateway; Internet of Things;

remote healthcare monitoring system; Node.js; web services.

1. Introduction

 The idea of devices connected with each other leads to an enormous systems based Internet of Things (IoT)

such as IoT-related healthcare systems. The implementation of these IoT-related healthcare is based on the

definition of the IoT as a network of devices connected with each other in order to capture and share useful data

through wireless connectivity and Internet access capabilities that connect to a central processing and

controlling server in the cloud[1].

IJASC 16-1-3

Manuscript Received: July 17, 2016 / Revised: July 28, 2016 / Accepted: August 05, 2016

Corresponding Author: jwjang@deu.ac.kr

Tel:+821056000845, Fax: +82518901724

Department of Computer Engineering, Dong-Eui University,

176 Eomgwangro, Busanjin-Gu, Busan, 614-714, Korea

Addressing Concurrency Design for HealthCare Web Service Gateway in Remote Healthcare Monitoring System 33

Remote Healthcare Monitoring (RHM) is a technology to enable monitoring of patients reside in an isolated

village with no access to effective health monitoring of conventional clinical settings[2]. However, most of

RHM technologies follow a general architecture that consists of four components[2]. First component is variety

of sensors on a device that is enabled by wireless communications to measure physiological parameters. The

second component is a local data storage on the coordinator mobile device (smartphone) at patient’s site that

interfaces between sensors and centralized data repository and healthcare monitoring hub server. The

coordinator device is equipped by wireless connectivity such as Wi-Fi or 3G/4G LTE enabled internet to send

collected physiological data to healthcare providers. The third component is a centralized repository to store

data sent from sensors, local data storage, diagnostic application, and healthcare providers. The last component

is the diagnostic application software that send a real-time alert to the patient based on the analysis of collected

data by triggering a series of actions previously agreed upon by the patient and medical practitioners. In this

paper, we use the term healthcare web service gateway for referring to the third and fourth component. The

Fig.1. shows the architecture for RHM system.

The healthcare web service gateway of the RHM system aims to handle a large number of requests from

patients in a concurrency manner at the point to handle treatment recommendations efficiently. Concurrency is

the tendency of things that happen at the same time in a system. Concurrency is particularly important in RHM

system that have to react to outside events in real-time and that often have hard deadlines to meet[3]. As the

number of patients’ requests increases in simultaneously manner, the healthcare web service gateway located at

the village hall encounters limitations for performing them successfully. Therefore, this RHM application fails

to detect deterioration of patient’s health, slows down predefined actions previously agreed upon by the patient

and the doctor. As consequences, number of emergency department visits increases, hospitalization and

duration of hospital stays increase healthcare delivery costs. In addition, patient cannot receive real-time alerts

which are a series of actions that take place automatically without the help of doctors. These alerts remind the

patient to take some precautions for instance. This situation can cause the death of patient when the doctor

cannot receive new data and the patient’s history from the healthcare hub server. Furthmore, the patient should

not benefit any immediate medical attention.

When we talk about concurrency, two approaches are proposed[4]. The first approach is to have multiple

threads in a single process. The second approach is to have multiple single-threated processes. Using separate

processes for concurrency also has an additional advantage. The advantage is to run the separates processes on

distinct machines connected over the network. Though this increases the communication cost. The alternative

approach is to run multiple threads in a single process. Each thread runs independently of the others, and each

thread may run a different sequences of instructions. The disadvantage of the multiple threads approach is that

all the threads in a single process share the same resources. In case the shared resource fails, the active threads

include in the single process are destroyed as well.

In this paper, we propose the design tasks of the RHM application for handling concurrency tasks. In the

procedure of designing tasks, concurrency is best understood by employing multiple levels of abstraction[5].

First, the functional requirement of the RHM system must be well understood in term of its desired behavior.

Next, possible function for concurrency should be checked into. This is best done using the abstraction of

threads. The way that is eminently to accomplish concurrency is to build an object-oriented environment with

support for messages passing between concurrent objects and minimize or eliminate the use of multiple threads

of control with a single process [6]. In software development, Node.js[7,8], a cross-platform runtime

environment for developing server-side web service features technologies for designing RHM system.

34 International Journal of Advanced Smart Convergence Vol.5 No.3 32-39 (2016)

Figure 1. Architecture of Remote healthcare monitoring system in an isolated location

with no access to local medical care.

The main contributions of this work are as follows:

 Design tasks that make sense to construct concurrent system for RHM application operates on the

healthcare web service gateway located at the village hall. The design of components that constitute

the healthcare minitoring gateway based web service are also described.

 To investigate the performance of healthcare web service gateway that includes backend server,

web programming framework and database able to support a large and increasing number of

concurrent patients’ requests. The performance metrics are throughput, response time and error rate

to compare server-side javaScript implementation using Google’s V8 javaScript engine and Rhino.

The rest of this paper is organized as follows. First, we discuss background of the technology related to the

study in Section II. We elaborate a general system design model for building healthcare web service gateway in

Section III. In Section IV, we brief the simulation, experimentation and analysis of results that state the

performance of server-side javaScript to handle concurrency connection in remote healthcare monitoring

system. A conclusion in Section V sums up our performance of Node.js and the advantages should bring when

deploying applications which require high-performance, asynchronous, event-driven network server with lowly

resource requirements.

2. Background and Technology Related to the Study

2.1 Internet of Things

 Internet of Things has been developed to efficiently interconnect billions of devices that can sense,

communicate and share information, all interconnected over public or private internet Protocol (IP) networks

[1]. IoT has recently become more relevant to the everyday world because of the growth of mobile devices,

embedded and ubiquitous communication, cloud computing and data analytics. With more physical objects and

smart devices connected, the impact and the value that IoT brings to our daily services have grown

exponentially. For instance, powered by these smart devices connected over the Internet, users can take the best

routes to drive to work or choose their favorite restaurant.

Addressing Concurrency Design for HealthCare Web Service Gateway in Remote Healthcare Monitoring System 35

2.2 Server-side JavaScript programming

When it comes to server-side JavaScript programming, developers have choices between Rhino javaScript

engine and V8 based solutions like Node.js, SilkJS, and others[9]. Rhino[9] is a java-based JavaScript

interpreter that gives JavaScript programs access to the entire Java API[9,10]. The Node.js is a platform for

building event-driven networking programs. It is a version of Google's V8 JavaScript. It runs single thread that

makes it to serve many clients concurrently. As shown in the Fig. 2., the event loop queues both new requests

and blocking I/O requests. The single-thread executes an event loop by setting up a simple mapping of all

requests. The event loop gradually dequeuing request from the queue, then processing the request, finally

taking the next request or waiting for new requests submitted[8,9].

Figure 2. Node.js is internally based around the concept of an event loop. There is an infinite

loop running in a single process that continually monitors what event occurred and what

callbacks need to be executed. It deals with queuing all events automatically, and keeps

calling the appropriate callbacks as fast as it can [8].

Figure 3. Design of concurrent objects for building RHM application on healthcare web

service gateway.

Using Node.js allows to write scalable network applications that inherit concurrency in their design. This is

accomplished by event-loop. To avoid blocking, all main Application Programming Interface (API)-calls that

36 International Journal of Advanced Smart Convergence Vol.5 No.3 32-39 (2016)

involve Input/output are asynchronous. Thus, instead of waiting the function to return, the event-loop can

execute the next event in the queue, and when the API-call is finished it calls a callback function specified

when the call was made. There is an infinite loop running in a single process that continually looks at what

event occurred and what callbacks need to be executed. It deals with queuing all events automatically, and it

keeps calling the appropriate callbacks as fast as it can. As a developer using Node.js, you do not really need to

know this, though you just need to know that your callbacks will be called when events occur as quickly as

possible the task completes[8](See Fig. 2.).

3. Design of Concurrency pattern on Healthcare web Service gateway for RHMS

Taken by concurrent components, neither blocks of software nor data structures nor procedures make very

natural models for concurrent components but objects seem like a very natural way to design a concurrency

software [6].

The Fig.3. illustrates objects as concurrent components for building RHM application on healthcare hub

server. Consider an object model for our RHM system located at the village hall. A patient’s status data object

allows collection of patients ‘data, then compares against a range of parameters set up by the doctor

(physicians) object. Based on the results, the object model for our RHM send a message to series of actions to

run object which executes a series of actions previously agreed upon by the patient and the doctor. Here

execute actions by notifying the patient and updating patient’s history data on doctor’s (or physicians) tablet

enable them to better assess the condition of the patients and reach more accurate diagnosis.

In order to support asynchronous communication, a current running instance of Node.js listens to all new

incoming tasks. The running instance features event loop on which is provided with a message queue. The

running instance refers to active object. The passive objects corresponds to the different tasks being run against

the Node.js applications such as Range of parameters set up by the doctor, patient’s data (Fig.3.). The passive

objects include a function and a callback that corresponds to the response to be executed by the active object

(thread pool) as soon the task encapsulates in the passive object is completed. The callback holds the state

information of the passive objects that performed non-blocking and long tasks.

4. Building healthcare web service gateway using node.js and experimentation results

The Fig. 4 below illustrates how we can use a Node.js app deployed on edge to perform to write patient’s

data onto MongoDB database. Thus, MongoDB fits perfectly for Node.js applications. Therefore Node.js and

MongoDB letting us write JavaScript for the backend and database layer . Furthermore, MongoDB is known

for its schemaless nature gives a better way to match the constantly evolving data structures in remote on-line

vehicle diagnostics applications. To start with, patient’s data is transmitted via internet. This data can be

converted into standard format for storage, and made available for both private patient’s physician and health

record network such as hospital.

Addressing Concurrency Design for HealthCare Web Service Gateway in Remote Healthcare Monitoring System 37

Figure 4 Design of the healthcare monitoring gateway features web services. It is based

node.js, MongoDB, MongoDB SSIS components.

The healthcare web service gateway implements the Enterprise Service Bus (ESB) based data integration.

The ESB facilitate for constructing a messaging backbone which does protocol conversion, message format.

The service bus interacts with Node.js should help for sending/receive and publish/subscribe messaging over

RabbitMQ. The MongoDB SSIS (SQL Server Integration Service) components allows to easily connect SQL

server with live MongoDB document database. The connection between SQL server and MongoDB is made

possible through workflows. When it comes to use MongoDB, Data flow Components are used to

synchronize with MongoDB data. To help healthcare record network and private’s physician pursue patient’s

data without compromising patient confidentiality, we recommend secure and encrypted storage. The

healthcare hub server should envisages encrypted storage of protected health information (PHI). All services

involved in the healthcare hub server should use secure gateways.

4.1 Experimentation results

The test plan use JMeter[11] to capture throughput, response time results of Node.Js‘s single-thread

event-loop against the traditional application based java on the server-side JavaScript interpreter using the

Apache sling. The capacity and performance testing is required to show that a healthcare hub minitoring

server which consists of backend server and database layers can run with acceptable responsiveness when a

large number of concurrent users can access these backend server-side and database simultaneously.

For each of the Client-healthcare hub Server Architecture, the goal is not to test the web application but to

listen to the http request sent from the mobile device in the same way an http request is submitted from a web

browser. The Application under test is Instant Heart Rate[12]. It uses smartphone built-in camera to track

color changes on the fingertip that are directly linked to your pulse. This android ‘s application is based on

the mobile client server computing that has a module of uploading the accurate rate data stored on a

temporary data store like SQLite[13] to the remote healthcare monitorting application server. The test

environment for the first Client- healthcare hub server Architecture consists of logic tier that determines

how data can be created , displayed, stored ,changed and data tier as shown on the Table 1.

38 International Journal of Advanced Smart Convergence Vol.5 No.3 32-39 (2016)

Table 1 implantation’s components for healthcare hub server

Open platform under test for
server side application

Logic tier Data tier

Node.js Express.js[14] MongoDB[14]

Apache Sling[15]

Java based
server
javaScript
/Java Content
Repository

MongoDB

The first tests against Node.js and the Apache sling simultaneously from 200 users up to 2000 users, 50

times. For each test, the “ramp-up” period is zero (0) which mean that all the users start sending the http
request simultaneously.

Figure. 5. Measurement of average Figure. 6. The measurement of throughput

response time for Node.js against Apache sling

What we can see on Fig.4. is that the response time degrades as the number concurrent requests increases.
For example, Node.JS-MongoDB was within response time of 54ms on average at 200 concurrent users, and
173ms on average at 2000 concurrent requests. We can see that for Apache-sling at the server side, the
average response time has an almost linear correlation to the number of concurrent requests. This means that
a thousandfold increases in concurrent users starts to a hundredfold increase in response time. The Fig. 6.
shows that the throughput deteriorates for the two models as the number of users increases. The results show
that for Node.js associated to MongoDB, the throughput was 380 requests per second at 200 concurrent users,
and 164 requests per second at 2000 concurrent users. The throughput of Node.js based event-driven
approach using V8 runtime engine have performed better than Apache-sling which use rhino as server-side
javaScript based Java. With Apache-sling-MongoDB configuration, the throughput increases up to 1000
concurrent users, then deteriorates as the number of concurrent users increases. This leads to formulate that
the number of concurrent users carried out by an Apache-sling at server-side for building web services is not
relatively constant. Therefore, Node.JS is roughly 40% faster, for example 164 request per second against
117 requests per seconds for 2000 users that corresponds to one hundred thousand (100000) concurrent
requests.

5. Conclusion and future works

The healthcare web service gateway constitutes by Node.JS server javascript side and MongoDB is 40%

faster that the Java based server side JavaScript solution using Apache sling with MongoDB database for

implementing mobile client server computing related remote healthcare monitoring system. In this paper, the

Addressing Concurrency Design for HealthCare Web Service Gateway in Remote Healthcare Monitoring System 39

difference concurrency models between single-threaded event loop Node.js and multi-thread approach made

difference. To test Node.js a higher concurrency level-where it is supposed to surpass multi-threading, other

problems like increasing the number of requests occur. For future work, we will implement the RHM system

using the node.js that collects patients’ data in a real time, controlling treatment recommendations and

intervention based on the analysis of collected data.

6. Acknowledgement

This research was supported by the Brain Busan 21 Project (2016), Nurimaru R&BD project (Busan IT

Industry Promotion Agency) (2016), and Dong-Eui University Research Institute (2016).

This paper is a revised and expanded version of a paper entitled Performance Investigation of

Event-Driven Server-Side for Internet of Things based Remote Monitoring Applications presented at 2nd

International Integrated (web & Offline) Conference & Concert on Convergence, Saint Petersburg State

University, August 7-14, 2016.

References

[1] Yvette EG, Ha Jin H, Haeng Kon K. Internet of Things (IoT) Framework for u-healthcare System.

International Journal of Smart Home 2015; Vol.9, No.11; pp.323-330.

[2]. Niewolny D, White paper: How the Internet of Things Is Revolutionizing Healthcare. Freescale

Semiconductor, Inc., Reg. U.S.; 2013.p.1-8.

[3]. Kang J, Yoo S and Oh D. Development of a Portable Embedded Patient Monitoring System.International

Journal of Multimedia and Ubiquitous Engineering (IJMUE). 2013; Vol.8, No.6; pp.141-1504.

[4]Kalin M. Three Ways to web Server Concurrency. Linuxjournal web site.2012, p1-2, Available at

http://www.linuxjournal.com/content/three-ways-web-server-concurrency(last access April 2016)

[5] PetitIV R.G, Gomaa Hassan. Analyzing Behavior of Concurrent Software Designs for Embedded

Systems. Proceedings of the 10 th IEEE International Symposium on Object and Component-Oriented

Real-time Distributed Computing.2007; p1-9

[6] ObjectTime Limited. Designing for Concurrency.Canada; 1998, pp1-28

[7] Tilkov S, Vinoski S. Node.js: Using JavaScript to Build High-Performance Network Programs. In:

Internet Computing, IEEE. 2010;Vol.14.No.6; p.80-83.

[8] Yuhao Z,Daniel R,Matthew H,Vijay,JR, Microarchitectural implications of event-driven server-side web

applications.In: Proceedings of the 48th International Symposium on Microarchitecture;2015.pp. 762-774.

[9] David F.JavaScript: The Definitive Guide, sixth Edition. O’Reilly Media, Gravenstein North, Sabastopol.

United States of America; 2011

[10] Artyom S. Continous Delivery of Apache Sling Applications. In: Ecolde Polytechnique Federale de

Lausanne. Thesis presented for the Degree of Master of Science.Switzerland; 2014. Available on line at

https://bdelacretaz.files.wordpress.com/2014/09/artyom-thesis.pdf.

[11] EmilyH,H., “Apache JMeter. A practical beginner’s guide to automated testing and performance

measurement for your websites,PACKT PUBLISHING,BIRMINGHAM-MUMBAI,2008, pp:1-138

[12] Shyam P. Building a Heart Rate monitor and dashboard for android, available on line at

https://www.pubnub.com/blog/2015-09-17-tutorial-realtime-android-heart-rate-monitor-and-dashboard/

[13] Sunguk L. Creating and Using Databases for Android Applications. In: International Journal of

Database Theory and Application. 2012, Vol.5, No.2;pp.99-106.

[14] Simon Holmes. Getting Mean With Mongo, Express, Angular and Node. MEAP Edition. Manning

Early Access Program. Manning, 2015, p8-24.

[15].Apache Sling Architecture. https://sling.apache.org/documentation/the-sling-engine/architecture.html

