• Title/Summary/Keyword: Hatchery

Search Result 261, Processing Time 0.028 seconds

Analysis of the Age-Dependent Change in the Blood Chemical Values from Hyline Brown Layer Chickens under Field Condition (하이라인 갈색 산란계의 일령별 혈액 화학치 변화 분석)

  • Son, Y.H.;Cha, S.Y.;Park, J.B.;Park, Y.M.;Ryu, K.S.;Jang, H.K.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • To evaluate the physiological status of laying flocks, the blood chemistry values were measured and analyzed in various ages under different feeding conditions. Total 671 birds from 48 Hyline brown hens flocks from 13 different poultry farms were bled at the ages of day(s) 1, 11, 21, 50, 80, 120, 180, 240, 300, 400, and 500. The 17 blood chemistries including glucose, lipids, proteins, enzymes, electrolytes and metabolic by-products were measured with an autoanalyzer. Blood glucose showed the highest at the hatching day not relate with the dietary carbohydrates and energy, but tended to decrease during the rest of growth stage in hens. Total blood protein, albumin and globulin increased depending on the ages even though dietary protein was decreased. Blood lipid was greatly changed at different growth stages. Cholesterol was the highest at hatching period and maintained consistently until the 120 days of age. It was increased in birds after 180 days of age. HDL was also highest in hatchery, but decreased greatly after 180 days of age. However, TG was the lowest at one day old, but was increased up to 10 times after 180 days of age compared to that of one day old. The enzyme activities were different. AST, ALT, and GGT showed comparatively contained consistently, whereas amylase was slowly decreased. Blood P, Na, K and Cl showed consistency, but Ca content was increased upto two times of the one day of age. The results from this study showed that the blood chemistry values were affected by the general metabolic status of the host with ages not by feeding conditions. Further, the standard data of age-dependent blood chemistry values in the laying flocks were obtained, which can be utilized for early detection of the changes in the physiological status occurred by the infectious or metabolic diseases. The results of these analyses seemed to be useful to increase the productivity of laying flocks through rapid and proper veterinary medical treatments.

Growth and Survival Rates of Flat Oyster, Ostrea denselamellosa, by Condition of Larval Cultivation (벗굴 (Ostrea denselamellosa) 유생의 생육조건에 따른 성장과 생존)

  • Yang, Moon-Ho;Oh, Bong-Se;Han, Chang-Hee
    • The Korean Journal of Malacology
    • /
    • v.19 no.2
    • /
    • pp.133-142
    • /
    • 2003
  • For the effective seedling production of flat oyster, Ostrea denselamellosa, dietary value of live food, densities, water temperature and salinity on growth and survival rate of the larvae were examined. In rearing larvae by feeding them phytoplankton diets, the optimal survival rate and growth rate of larvae were found using a mixed phytoplankton diet which was mixed with Isochrysis galbana, Chaetoceros calcitrans and Chlorella sp. The highest growth and survival rates of the larvae were 208.4% and 38.8% with the phytoplankton diet. In growth and survival rates of larvae with various rearing densities, the highest survival and growth rates were 228.1% and 29.0% at the density of 2 individuals/ml. In observing rearing experiments of the flat oyster larvae under various temperature conditions, average growth rates of the larvae in respect to shell length were 202.2%, 240.4%, 250.6% and 121.3% in natural water temperatures (18-22$^{\circ}C$), 24$^{\circ}C$, 28$^{\circ}C$ and 32 $^{\circ}C$, respectively. And average survival rates of the larvae were 16.0%, 32.0%, 13.0% and 0% in natural water temperatures (18-22$^{\circ}C$), 24$^{\circ}C$, 28$^{\circ}C$ and 32$^{\circ}C$, respectively. In rearing at various salinities, the highest growth rates of the larvae in shell length was 240.0% at 30.0 psu and the highest survival rate was 31.0% at 25 psu.

  • PDF

Growth of the Scallop, Patinopecten yessoensis in Suspended Culture in the East Coast of Korea (동해안 참가리비, Patinopecten yessoensis의 성장)

  • Park, Young-Je;Rho, Sum;Lee, Chae-Sung
    • Journal of Aquaculture
    • /
    • v.14 no.3
    • /
    • pp.181-195
    • /
    • 2001
  • To stabilize the lantern cage culture system of Patinopecten yessoensis(Jay) in the eastern coast of Korean peninsula, optimum conditions such as time of transplantation, rearing density and depth, and time of harvest were identified. During the period from January 1991 to December 1998, the water temperature ranged from 4.7 to 21.4$^{\circ}C$ at 15-30 m depth and 4.9 to 25.7$^{\circ}C$ at the surface; these thermal ranges were within the optimal ranges (5-23$^{\circ}C$) prevailing at 15-30 m depth at surface water. Annual thermal changes indicated that the prevailing temperature during the years 1993 and 1996 was near optimum, but higher during the years 1994, 1997 and 1998, when mass mortality and growth retardation occurred. Salinity (32.0- 34.4$\textperthousand$) and dissolved oxygen (4.14 -8.11 $\mu\textrm{g}$/l) at 15 m depth were well within the optimum ranges. The chlorophyll concentrations (0.06 - 2.73$\mu\textrm{g}$/l) indicated that the study area was oligotrophic, although mass mortality did occur, when chlorophyll concentrations were high, especially in summer. Hence water temperatures and chlorophyll concentration are major factors related to survival and growth of the scallop. In terms of the shell height maximum growth occurred during spring (March-May; 8 - l3$^{\circ}C$) and fall (October-December; 11-l7$^{\circ}C$) in the lantern cage culture. Slow growth was recorded during late winter January-february; less than 7$^{\circ}C$) and mid-summer (August- September; more than 18$^{\circ}C$). Daily growth of shell height and total weight were 0.02∼0.24 mm and -0.07∼0.90 g at the rearing density of 12 individuals per net. Optimal .earing density in the lantern cage (ø50${\times}$20 cm) was 10∼15 individuals with the shell height of 5∼6 cm. The fastest growth rates were observed at 15∼20 m depth; however, it is recommended that 20∼30 m would be optimal. The scallops require 22 months to attain the commercial size of 10 cm shell height and 140 g total weigh, and are best harvested and sold during March-April.

  • PDF

Reproductive Cycle of a Rockfish, Sebastes schlegeli (조피볼락의 생식주기)

  • BAEK Jae-Min;HAN Chang-Hee;KIM Dae-Jung;PARK Chul-Won;Aida Katsumi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.431-438
    • /
    • 2000
  • To clarify the annual reproductive cycle in a rockfish, Sebastes schlegeli, monthly changes in gonadosomatic index (GSI), hepatosomatic index (HSI) and histological feature of gonads and plasma levels of sex steroid hormones ($estradiol-l7{\beta},\;17{\alpha},\;20{\beta}-dihydroxy-4-pregnen-3-one,\;testosterone\;and\;11-ketotestosterone$) were investigated. The annual reproductive cycle in females could be divided into 5 periods as follows: 1) recovery period (June to September): serum level of $estradiol-l7{\beta}$ increased gradually; 2) vitellogenesis period (Septemer to february) : vitellogenic oocytes were obsewed, GSI sustained high value, and serum level of $estradiol-l7{\beta}$ increased; 3) gestation period (February-April): developing larva showed in the ovary, and serum levels of $17{\alpha},\;20{\beta}-dihydroxy-4-pregnen-3-one$ and testosterone increased; 4) partrition period (April to May) : larva were delivered, and value of GSI and serum levels of hormones decreased rapidly; 5) resting period (May to June) : value of GSI and serum levels of $estradiol-l7{\beta}$ and testosterone remained low. The annual reproductive cycle in males could be divided into 6 periods; 1) early maturation period (April to June): value of GSI and serum levels of hormones incresed gradually, cyst of spermatogonia incresed in number, and a small number of cyst of spermatocyte was observed; 2) mid-maturation perid (June to September); value of GSI and serum levels of hormones increased, and germ cells in many cysts were undergoing active sperrnatogenesis; 3) late maturation period (September to November) : value of GSI and serum levels of hormones remained high and spermatozoa were released into the lumina of the seminal lobules; 3) spermatozoa dischaging period (Nobember to December) : the lumina of the seminal lobules were enlarged and filled with mature spermatozoa; 4) degeneration period (December to Februauy)i value of GSI decresed and cyst of spermatocyte were decresed in number; 5) resting period (December to April) : no histological changes of testes were observed, and value of GSI and serum levels of hormones remained low. In November, the lumina of the seminal lobules were filled with mature spermatozoa and sperm masses were present in the ovarian cavity. Thus, copulation in this species occurred in November and December.

  • PDF

Toxic Effects of Phenol on Survival and Oxygen Consumption of the Abalone Juvenile, Haliotis discus hannai (참전복, Haliotis discus hannai 치패의 생존과 산소소비에 미치는 phenol의 독성 영향)

  • KIM Heung-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.496-504
    • /
    • 1997
  • This study was carried out to estimate toxic effects of phenol on survival and metabolism of the abalone juvenile, Haliotis discus hannai. The experiment was conducted by renewal bioassay procedure with different salinities at $20^{\circ}C$. The $LC_{50}$ of the juvenile exposed to phenol in the range of 0.5 and $100mg/\ell\;was\;34.3\~6.5mg/\ell\;at\;2.4\%_{\circ}\;and\;52.2\~9.3m/\ell\;at\;32\%_{\circ}$ salinity with exposure time from 24 hours to 96 hours. $LT_{50}$ was remarkablely reduced with increase of phenol conentration and decrease of salinity. Lethal toxicity or phenol was higher at low salinity than at high salinity. Therefore, salinity is likely to be one of factor to increase phenol toxicity. The oxygen consumption of the juvenile was reduced with increase of phenol concentration and with decrease of salinity. In spite of phenol toxicity, the oxygen consumption of the juvenile exposed to phenol of low concentration was high and similar as compared with that of control group. Survival rates of the abalone kept in phenol-free sea water after exposure to phenol concentration of 5, 10 and $20mg/\ell$ for 96 hours were reduced with decrease of salinity. Durations required to recover the normal metabolic rate of the juvenile, which was exposed to phenol concentration of 5, 10 and $20mg/\ell$ for 96 hours, were made longer with increasing phenol concentration. In the case of the juvenile exposed to sublethal concentration of phenol for 15 days, it were elongated as compared with that of the abalone exposed to phenol concentration caused acute toxicity. The result of this experiment indicated that relatively low concentration of phenol can impact on the abalone juvenile in marine ecosystem.

  • PDF

Egg and Larval Development of Chelon lauvergnii from Korea (한국산 가숭어, Chelon lauvergnii의 난 및 자치어의 형태발달)

  • Kim, Jin-Koo;Kim, Yong-Uk;Byun, Soon-Gyu
    • Korean Journal of Ichthyology
    • /
    • v.12 no.2
    • /
    • pp.137-145
    • /
    • 2000
  • The embryonic and larval development of Chelon lauvergnii (Eydoux & Souleyet) was surveyed by incubating artificially inseminated eggs with parent fishes obtained at Kang-wha island in the mid-western coastal area of Korea on June, 1997. The fertilized eggs were transparent, spherical in shape, measuring 0.95~1.08 mm in diameter, having a large oil globule, and their perivitelline space narrow, and began to hatch at 40 hrs. in water temperature $22{\pm}1^{\circ}C$. The newly hatched larvae were 2.35~2.68 mm in total length with 23 myomeres, anus opened, mouth closed, preanal length 58.7~61.6% of total length, oil globule located in posterior end of yolk sac. Melanophores, branch in shape, were distributed mainly along the ventro-lateral region of trunk part and a few on the anterior end of caudal part and surface of oil globule. The larvae measuring 3.08~3.36 mm in total length absorbed yolk material completely in 3 days after hatching, in which air bladder began to appear and mouth opened. In 8 days after hatching, the larva was measured 5.09 mm in total length, its posterior end of notochord began to flex upward and the caudal fin rays differentiated as 7, finfold of the second dorsal and anal fins appeared. In this time, melanophores, branch in shape, were concentrated in the anterior half region of the caudal part and a few also distributed on the top of head, snout region, ventral margin of lower jaw and isthmus region. In 12 days after hatching, the larva measuring 8.48 mm in total length completed all the fins (D. IV-9; P1. 16; P2. I, 5; A. II, 9) and reached to the juvenile stage. Melanophores, in this time, were distributed on the mid-lateral region of the caudal part in enlargment than before and a few also found in the dorso-lateral region of the trunk part, and in the cheek region.

  • PDF

Gonadal Maturation and Reproductive Cycle In Oblong Rockfish, Sebastes oblongus (황점볼락, Sebastes oblongus의 성숙과 생식주기)

  • Chang Young Jin;Lim Han Kyu;Byun Soon Gyu
    • Journal of Aquaculture
    • /
    • v.8 no.1
    • /
    • pp.31-46
    • /
    • 1995
  • Gonadal maturation and annual reproductive cycle in ovoviviparous oblong rockfish, Sebastes oblangus on the basis of monthly gonadosomatic indices (GSI), hepatosomatic indices (HSI) and histological observations of gonadal tissues. GSI values of female were in a wide range from $0.l5\pm0.0l\;(July)\;to\;58.54\pm3.86$ (December) and began to increase in August and reached the maxium in December, then decreased rapidly thereafter. Male GSI values were in a range from $0.08\pm0.03$ (July) to $1.55\pm0.27$ (September) and began to increase rapidly in July and reached the maximum in September, then decreased gradually, thereafter. Female HSI was in a range from $0.89\pm0.12$ (December) to $3.73\pm0.15$ (October), and male's was from $2.09\pm0.76$ (October) to $3.62\pm0.48$ (August). HSI reached the maximum values one or two months before GSI reached their maxium values in both sex, and then decreased rapidly thereafter. Mature oocytes began to appear in late October as being oocytes began to mature in August, and the type of oocyte development is categorized in the roup-synchronous oocyte development'. Ovulation and fertilization of ripe oocytes occurred in November, and hatched larvae were born from December to January. Maturation of testis was progressed in short term from August to October and spermatozoa were released in October. Sperm balls consisted of many spermatozoa were preserved in ovarian cavity of female after copulation. These results may suggest that the annual reproductive cycle of oblong rockfish could be divided into the following successive stages: growing (August and September), mature (September and October), gestation (November and December), parturition (December and January) and resting (February to July) in female, and growing (August and September), mature (September and October), copulation (October) and resting (November to July) in male.

  • PDF

Intensive Culture of the Pacific White Shrimp Litopenaeus vannamei, under Limited Water Exchange - II. Indoor Post-Nursery Culture of Juvenile Shrimp - (사육수 비교환 방식에 의한 흰다리새우의 고밀도 사육 - II. 흰다리새우의 실내 중간양성 -)

  • Jang, In-Kwon;Kim, Jong-Sheek;Seo, Hyung-Chul;Cho, Kook-Jin
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Shrimp farming which is entirely conducted in outdoor ponds in the west coast of Korea has been suffered from mass mortality due to viral epizootics. Intensive indoor shrimp culture under limited water exchange can solve these problems of outdoor ponds including viral transmission from environment, pollution due to discharge of rearing water, low productivity and limited culture period. In this study, juvenile L. vannamei (B.W. 0.08-0.09 g) was stocked with $3,000-5,455/m^3$ in density in four raceway tanks (two $12.9\;m^2$, two $18\;m^2$ tanks) and cultured for 42 days with 2.7-3.4% of daily water exchange. Results from four tanks showed FCR of 0.79-1.29, survival of 38.2-48.0%, and yields of $2.49-4.22\;kg/m^3$ which is consistent with 12-20 and 8-14 times higher than those of commercial shrimp hatchery and outdoor pond in Korea, respectively. Concentrations of total ammonia nitrogen in all four tanks were 1.11-1.42 ppm in mean level and did not exceed 6.0 ppm (0.096 ppm of $NH_3$) which is still acceptable levels for shrimp growth. During the culture trial, concentration of $NO_2$-N rapidly increased from stocking, resulting in mean concentration of 18.45-22.07 ppm. It also exceeded 10 ppm over four weeks and maintained at 35-45 ppm for four days in all tanks, accounting for low survival of shrimp due to long-term exposure to high concentration of $NO_2$-N. Nevertheless, the results with survival rate over 38% from raceways which experienced the extreme $NO_2$-N levels suggests that under "biofloc system" white shrimp can acclimate to high $NO_2$-N concentration to some degree.

Physiological Responses of Cultured Olive Flounder (Paralichthys olivaceus) on Series of towering Seawater Temperature Sharply and Continuously (양식넙치 (Paralichthys olivaceus)의 생리조건에 미치는 연속적인 수온 급강하의 영향)

  • CHANG Young Jin;PARK Myong Ryong;KANG Duk-Young;LEE Bok Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.601-606
    • /
    • 1999
  • Physiological responses of cultured olive flounder (Paralichthys olivaceus) on lowering seawater temperature sharply and continuously were studied with 4 experiments of temperature changes (Exp.I$\~$IV). In Exp.1, the temperature was decreased from $18^{\circ}C$ to $9^{\circ}C$ by the rate of $1^{\circ}C$/hr, thereafter back to the initial temperature after 5 dars. With the same conditions of temperature rate and 5 days interval, the temperature changes for Exp.II, III and IV were $20^{\circ}C$ to $17^{\circ}C,\;23^{\circ}C$ to $14^{\circ}C$ and $23^{\circ}C$ to $17^{\circ}C$, respectively, Serum cortisol and glucose were measured during whole experiments. Hematocrit (Ht), hemoglobin (Hb), red blood cell (RBC) and mean corpuscular hemoglobin concentration (MCHC) were measured in the Exp.I, and osmolality, electrolytes ($Na^+,\;Cl^-,\;K^+,\;Ca^{2+}$), total protein, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) of serum, in Exp.II$\~$IV. Serum cortisol levels were significantly increased by the lowering temperature sharply during whole experiments, while serum glucose levels were increased only in Exp,III and IV. Ht, RBC and Hb were decreased as the water temperature was lowered, but MCHC was increased. The serum osmolality was reduced and the unstable changes of electrolytes were shown by the changes of seawater temperature. No significant changes in total protein, ALT and AST activity were observed.

  • PDF

Overcoming taxonomic challenges in DNA barcoding for improvement of identification and preservation of clariid catfish species

  • Piangjai Chalermwong;Thitipong Panthum;Pish Wattanadilokcahtkun;Nattakan Ariyaraphong;Thanyapat Thong;Phanitada Srikampa;Worapong Singchat;Syed Farhan Ahmad;Kantika Noito;Ryan Rasoarahona;Artem Lisachov;Hina Ali;Ekaphan Kraichak;Narongrit Muangmai;Satid Chatchaiphan6;Kednapat Sriphairoj;Sittichai Hatachote;Aingorn Chaiyes;Chatchawan Jantasuriyarat;Visarut Chailertlit;Warong Suksavate;Jumaporn Sonongbua;Witsanu Srimai;Sunchai Payungporn;Kyudong Han;Agostinho Antunes;Prapansak Srisapoome;Akihiko Koga;Prateep Duengkae;Yoichi Matsuda;Uthairat Na-Nakorn;Kornsorn Srikulnath
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.39.1-39.15
    • /
    • 2023
  • DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.