Intensive Culture of the Pacific White Shrimp Litopenaeus vannamei, under Limited Water Exchange - II. Indoor Post-Nursery Culture of Juvenile Shrimp -

사육수 비교환 방식에 의한 흰다리새우의 고밀도 사육 - II. 흰다리새우의 실내 중간양성 -

  • Jang, In-Kwon (West Sea Mariculture Research Center, National Fisheries Research & Development Institute) ;
  • Kim, Jong-Sheek (West Sea Mariculture Research Center, National Fisheries Research & Development Institute) ;
  • Seo, Hyung-Chul (West Sea Mariculture Research Center, National Fisheries Research & Development Institute) ;
  • Cho, Kook-Jin (West Sea Mariculture Research Center, National Fisheries Research & Development Institute)
  • 장인권 (국립수산과학원 서해특성화연구센터) ;
  • 김종식 (국립수산과학원 서해특성화연구센터) ;
  • 서형철 (국립수산과학원 서해특성화연구센터) ;
  • 조국진 (국립수산과학원 서해특성화연구센터)
  • Published : 2009.02.25

Abstract

Shrimp farming which is entirely conducted in outdoor ponds in the west coast of Korea has been suffered from mass mortality due to viral epizootics. Intensive indoor shrimp culture under limited water exchange can solve these problems of outdoor ponds including viral transmission from environment, pollution due to discharge of rearing water, low productivity and limited culture period. In this study, juvenile L. vannamei (B.W. 0.08-0.09 g) was stocked with $3,000-5,455/m^3$ in density in four raceway tanks (two $12.9\;m^2$, two $18\;m^2$ tanks) and cultured for 42 days with 2.7-3.4% of daily water exchange. Results from four tanks showed FCR of 0.79-1.29, survival of 38.2-48.0%, and yields of $2.49-4.22\;kg/m^3$ which is consistent with 12-20 and 8-14 times higher than those of commercial shrimp hatchery and outdoor pond in Korea, respectively. Concentrations of total ammonia nitrogen in all four tanks were 1.11-1.42 ppm in mean level and did not exceed 6.0 ppm (0.096 ppm of $NH_3$) which is still acceptable levels for shrimp growth. During the culture trial, concentration of $NO_2$-N rapidly increased from stocking, resulting in mean concentration of 18.45-22.07 ppm. It also exceeded 10 ppm over four weeks and maintained at 35-45 ppm for four days in all tanks, accounting for low survival of shrimp due to long-term exposure to high concentration of $NO_2$-N. Nevertheless, the results with survival rate over 38% from raceways which experienced the extreme $NO_2$-N levels suggests that under "biofloc system" white shrimp can acclimate to high $NO_2$-N concentration to some degree.

새우양식은 서해안의 축제식 양식장에서 거의 전적으로 이루어지고 있지만 최근 바이러스성 질병 피해와 생산성 저하로 해마다 피해가 증가하고 있다. 사육수 비교환 방식의 실내 고밀도 새우양식은 바이러스의 유입의 억제, 배출수에 의한 연안환경 오염 방지, 생산성 향상 뿐 아니라 출하시기의 조절 등 장점이 있어 축제식 양식장의 문제점을 해결할 수 있다. 본 연구는 타가영양을 기본으로 하는 BFT (biofloc technology) 방식으로 제작된 4개의 raceway형 tank (12.9, $18\;m^2$ 각 2개)에 흰다리새우 치하(B.W. 0.08-0.09 g)를 3,000-5,455 마리/$m^3$ 밀도로 입식하고 42일간 환수율 2.7-3.4%/day로 사육한 결과, 생산량은 $2.49-4.22\;kg/m^3$으로 일반 새우종묘배양장의 12-20배, 축제식 양식장의 8-14배에 달하였다. 수확시 tank에 따라서 새우의 평균 체중은 1.45-2.03 g, 생존율은 38.2-48.0%, FCR은 0.79-1.29이었다. 총암모니아성 질소의 농도는 평균 1.11-1.42 ppm이며 최고 6.0 ppm ($NH_3$ 농도, 0.096 ppm)까지 상승하였으나 새우에게 영향을 미칠만한 농도는 아니었다. 아질산성 질소는 사육 초기부터 꾸준히 상승하여 전 기간 평균 18.45-22.07 ppm으로 높게 유지되었다. 또한 아질산성 질소는 모든 tank에서 4주간 10 ppm 이상의 농도가 지속되었으며 후반기 4일 동안은 35-45 ppm의 높은 농도를 보여주어 새우의 생존에 영향을 미친 것으로 판단된다. 그러나 본 실험에서 보여준 장기간의 높은 아질산염의 농도에도 불구하고 최저 38%의 새우가 생존한 점은 BFT 조건 하에서 아질산염에 대한 새우의 적응능력을 설명해주며 이에 대한 기작과 내성한계 등에 대한 추가적인 추구가 필요할 것이다.

Keywords

References

  1. Avnimelech, Y., 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227-235 https://doi.org/10.1016/S0044-8486(99)00085-X
  2. Avnimelech Y., 2006. Bio-fiIters: The need for a new comprehensive approach. Aquacult. Eng., 34, 172-178 https://doi.org/10.1016/j.aquaeng.2005.04.001
  3. Avnimelech, Y., M. Kochva and S. Diab, 1994. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. Bamidgeh, 46, 119-131
  4. Barajas, F. M., R. S. ViIlegas, G. P. Clark, J. G. Mosqueda and B. L. Moreno, 2006. Daily variation in short-term static toxicity of unionized ammonia in Litopenaeus vannamei (Boone) postlarvae. Aquaculture Research, 37, 1406-1412 https://doi.org/10.1111/j.1365-2109.2006.01573.x
  5. Boyd, C. E. and J. W. Clay, 2002. Evaluation of Belize Aquaculture, Ltd: a superintensive shrimp aquaculture system. Washington, DC. World Bank, Network of Aquaculture Centres in Asia-Pacific, World Wildlife Fund and Food and Agriculture Organization of the United Nations Consortium Program on Shrimp Farming and the Environment
  6. Bratvold, D. and C. L. Browdy, 1999. Disinfection, community establishment and production in a prototype biosecure shrimp pond. J. World Aquacult. Soc., 30, 422-432 https://doi.org/10.1111/j.1749-7345.1999.tb00990.x
  7. Bratvold, D. and C. L. Browdy, 2001. Effects ofplastic sand, or additional vertical substrates on shrimp production water quality and microbial ecology in an intensive culture system. Aquaculture, 195, 81-94 https://doi.org/10.1016/S0044-8486(00)00538-X
  8. Brock, J. A., R. B. Gose, D. V. Lightner and K. Hasson, 1997. Recent developments and an overview of Taura Syndrome of farmed shrimp in the Americas. (in) T. W. Flegel and I. H. McRae (eds.), Diseases in Asian Aquaculture III. Fish Health Section, Asian Fisheries Society. Manila, Phillipines, pp. 275- 284
  9. Browdy, C. L., D. Bratvold, A. D. Stokes and R. P. McIntosh, 2001. Perspectives on the application of closed shrimp culture systems. (in) C. L. Browdy and D. E. Jory (eds.). The new wave, proceedings of the special session on sustainable shrimp culture, Aquaculture, The World Aquaculture Society, Baton Rouge, Louisiana, USA, pp. 20-34
  10. Browdy, C. L. and S. M. Moss, 2005. Shrimp culture in urban, super-intensive closed systems. (in) B. Costa-Pierce, A. Desbonnet, P. Edwards and D. Baker (eds.), Urban Aquaculture. CABI Publishing, Oxfordshire, UK. pp. 173-186
  11. Burford, M. A. and K. Lorenzen, 2004. Modeling nitrogen dynamics in intensive shrimp ponds: the role of sediments remineralization. Aquaculture, 229, 129-145 https://doi.org/10.1016/S0044-8486(03)00358-2
  12. Burford, M. A., P. J. Thompson, R. P. Mclntosh, R. H. Bauman and D. C. Pearson, 2004. The contribution offlocculated material to shrimp uitopenaeus vanηamei) nutrition in a highintensity, zero exchange system. Aquaculture, 232, 525-537 https://doi.org/10.1016/S0044-8486(03)00541-6
  13. Chen, J. C. and S. C. Lei, 1990. Toxicity of ammonia and nitrite to Penaeus monodon juvenilεs. J. World Maricult. Soc., 21(4), 300-306 https://doi.org/10.1111/j.1749-7345.1990.tb00543.x
  14. Chen, J. C. and T. C. Chin, 1998. Joint action of ammonia and nitrite on tiger prawn, Penaeus monodon' postlarvae. J. World Aquacult. Soc., 9, 143-148
  15. Cohen, J., T. M. Samocha, J. M. Fox, R. L. Gandy and A. L. Lawrence, 2005. Characterization ofwater quality factors during intensive raceway production of juvenilc L. vannamei using limited discharge and biosecure management tools. Aquacult. Eng., 32, 425-442 https://doi.org/10.1016/j.aquaeng.2004.09.005
  16. Davis, D. A. and C. R. Amold, 1998. The design, management,and production of a rccirculating raceway systcm for the production of marine shrimp. Aquacult. Eng., 17, 193-211 https://doi.org/10.1016/S0144-8609(98)00015-6
  17. Decamp, O., L. Conquest, J. Cody and I. Forster, 2007. Effect of shrimp stocking density on size-fractionated phytoplankton and ecological groups of ciliated protozoa within zero-water exchange shrimp culture systems. J. World Aquacult. Soc., 38, 395-406 https://doi.org/10.1111/j.1749-7345.2007.00111.x
  18. Ebeling, J. M. B. Timmons and J. J. Bisogni, 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and hetεrotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257, 346-358 https://doi.org/10.1016/j.aquaculture.2006.03.019
  19. Flegel, T. W., 1997. Special topic review: majr viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World Journal of Microbiology and Biotechnology, 13, 433-442 https://doi.org/10.1023/A:1018580301578
  20. Frias-Espericueta, M. G., M. Harfush-Mεlεndez and F. Paez-Osuna, 2000. Effects of ammonia on mortality and feeding of postlarvac shrimp Litopenaeus vannamei. Bull. Environ. Contam. Toxicol., 65, 98-103 https://doi.org/10.1007/s001280000100
  21. Handy, M., T. M. Samoιha, S. Patnaik, R. L. Gandy and D. A. McKee, 2004. Nursery trial compares filtration system performance in intensive raceways. Global Aquaculture Advocate, 8, 77-79
  22. Hopkins, J. S., P. A. Sandifer, C. L. Browdy and J. D. Holloway, 1999. Comparison of exchangε and no-exchangε water management for the intensive culture of marine shrimp. Journal of Shellfish Research, 13, 441-445
  23. Itoi S., A. Niki and H. Sugita, 2006. Changes in micronial communities associated with the conditioning of filter material in recirculating aquaculture systems of the puffer fish Takifugu rubripes. Aquaculture, 2565, 287-295
  24. Jang, I. K., Y. R. Cho, J. Y. Lee, H. C. Seo, B. L. Kim, J. S. Kim and H. W. Kang, 2007a, Selective predatory effect of river puffer on WSSV-infected shrimp in culture of shrimp with river puffer under laboratory scale. J. Aquaculture, 20(4), 270-277 (in korean)
  25. Jang, I. K., J. C. Jun, G. J. Jo, Y. R. Cho, H. C. Seo, B. L. Kim and J. S. Kim, 2007b. Polyculture of fleshy shrimp Fenneropenaeus chineκsis and white shrimp Litopenaeus vannamei with riverpuffer Takifugu obscurus in shrimp ponds. J. Aquaculture, 20(4), 278-288 (in Korean)
  26. Jang, I. K., J. S. Kim, K. J. Cho, H. C. Seo,Y. R. Cho, A. Gopalakannan and B. L. Kim, 2008. Intensive culture of the Pacific white shrimp, Litopenaeus vannamei,under limited water cxchange. I. lndoor nursery culture of postlarvae. J. Aquacult., in press (in Korean)
  27. Johnson, C. N., S. Barnes, J. Ogle and D. J. Grimes, 2008. Microbial community analysis of water, foregut and hindgut during growth of Pacific white shrimp, Litopenaeus vannamei, in closed system aquaculture. J. World Aquacult. Soc., 39, 251-25 https://doi.org/10.1111/j.1749-7345.2008.00155.x
  28. Landesman, L., 1994. Negative impacts of coastal aquaculture development. J. World Aquacuit., 25, 12-17
  29. Lotz, J. M. and D. V. Lightner, 2000. Shrimp Biosecurity: Pathogens and Pathogen Exclusion. (in) R. A. Bullis and G. D. Pruder (eds.), Controlled and Biosecure Production Systems, Proceedings of a Special Session-Integration of Shrimp and Chicken Models, The Occanic Institute, Waimanalo, Hawaii, USA, pp. 67-74
  30. Malone, R.F., B. S. Chitta and D. G. Drennan, 1993. Optimizing nitrification in beads filters for warm water recirculating aquaculture systems. (in) J. K. Wang (ed.), Techniques for modem aquaculture. American Sociecty Aquaculture Engineering, St. Joseph, Michigan, USA. pp. 315-325
  31. McAbee, B. J., C. L. Browdy, R. J. Rhodes and A. D. Stokes, 2003. Greenhouse raccways considered for supcrintensivc U.S. shrimp production. Global Aquaculture Advocate, 6(4), 40-41
  32. Mclntosh, R. P., 1999. Changing paradigms in shrimp farming. I. General description. Global Aquaculture Advocate, 2(4/5), 42-47
  33. McIntosh, R. P., 2000. Changing paradigms in shrimp farming: V. Establishment of heterotrophic bacterial communities. Global Aquaculture Advocate, 3(6), 52-54
  34. McIntosh, R. P., 2001. High rate bacterial systems for culturing shrimp. (in) S. T. Summerfelt et al. (eds.). Proceedings from the Aquacultural Engineering Society’s 2001 Issues Forum Shepherdstown, West Virginia, USA. Aquaculturc Engineering Society. pp. 117-129
  35. Mishra, J. K., T. M. Samocha, S. Patnaik, M. Speed, R. L. Gandy and A. Ali, 2008. Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacult. Eng., 38, 2-15 https://doi.org/10.1016/j.aquaeng.2007.10.003
  36. Moss, S. M., 2000. Benefits of a microbially dominated intensive shrimp production system: a review of pond water studies at the Oceanic Institure, Global A quaculture Advocate, 3(2), 53-55
  37. Moss, S. M., 2002. Kietary imoortance of microbes and detritus in penaeid shrimp aquaculture. (in) C. S. Lee and P, O'Bryen (des.), Microbial approaches to aquatic nutrition within environmentally sound aquaculture production systims. World Aquaculture Society, Baton Rouge, USA, pp. 1-18
  38. Moss, S. M., W. J. Reynolds and L. E. Mahler, 1998. Design and economic analysis of a prototype biosecure shrimp growout facility. (in) S. M. Moss (ed.), U.S. Marine Shrimp Farming Program Biosecurity Workshop. Honolulu, Hawaii, USA. The Oceanic Institute. pp. 67-74
  39. Moss, S. A., G D. Pruder, and T. M. Samocha, 1999. Environmental management and control: controlled ecosystem and biosecure shrimp growout systems. (in) R. A. Bullis and G D. Pruder (eds.), Controlled and biosecure production systems, Preliminary Proceedings of a Special Integration of Shrimp and Chicken Models, 27-30 April, Sydney, Australia, World Aquaculture Society, pp. 87-91
  40. Reid, B. and C. R. Amold, 1992. The intensive culture of the penaeid shrimp Penaeus vannamei Boone in a recirculating raceway system. J World. Aquacult. Soc., 23, 146-153 https://doi.org/10.1111/j.1749-7345.1992.tb00763.x
  41. Samocha, T. M., T. Blacher, J. Cordova and A. De Wind, 2000. Raceway nursery production increases shrimp survival and yields in Ecuador. Global Aquaculture Advocate, 3(6), 66-68
  42. Samocha, T. M., L. Hamper, C. R. Emberson, A. D. Davis, D. Mclntosh, A. L. Lawrence and P. van Wyk, 2002. Review of some recent developments in sustainable shrimp farming practices in Texas, Arizona and Florida. J. Appl. Aquacult., 12, 1- 42
  43. Samocha, T. M., S. Patnaik, M. Speed, A. M. Ali, J. M. Burger, R. V. Almeida, Z. Ayub, M. Harisanto, A. Horowitz and D. L. Brock, 2007. Use ofmolasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacult. Eng., 36(2), 184-191 https://doi.org/10.1016/j.aquaeng.2006.10.004
  44. Sandifer, P. A., A. D. Stokes and J. S. Hopkins, 1991. Further intensification ofpond shrimp culture in South Carolina. (in) P. A. Sandifer (ed.), Shrimp culture in North America and the Caribbean. Advances in World Aquaculture 4. The World Aquaculture Society, Baton Rouge, LA, pp. 84-95
  45. Schneider, O., M. Chabrillon-Popelka, H. Smidt, O. Haenen, V. Sereti, H. Eding and J. A. J. Verreth, 2007. HRT and nutrients affects bacterial communities grown on recirculation aquaculture system eftluents. FEMES Microbial Ecology, 60, 207-21 https://doi.org/10.1111/j.1574-6941.2007.00282.x
  46. Sich, H. and J. van Rijn, 1992. Distribution of bacteria in a biofi1ter-equiped semi intensive fish culture unit. Special Publication in European Aquaculture Society, 17, 55-7
  47. Sowers, A., S. P. Young, P. Shawn, J. Isely, J. Jeffery, C. L. Browdy and J. R. Tomasso, 2004. Nitrite toxicity to L. vannamei in water containing low concentrations of sea salt or mixed salts. J. World Aquacult. Soc., 35(4), 445-451 https://doi.org/10.1111/j.1749-7345.2004.tb00109.x
  48. Van Wyk, P. M., 1999. Harbor Branch Shrimp Production Systems. (in) B. Crawford (ed.), Production ofmarine shrimp in freshwater recirculating aquaculture systems. Florida Depatment of Agriculture and Consumer Services, Tallahassee, FL, USA, 222 pp
  49. Van Wyk, P., 2000. Culture of Penaeus vannamei in single-phase and three-phase recirculating aquaculture systems. Global Aquaculture Advocate, 3, 41-43
  50. Van Wyk, P., 2001. Designing efficient indoor shrimp production systems: a bioeconomic approach. (in) C. L. Browdy and D. E. Jory (eds.), The new wave, proceedings of the special session on sustainable shrimp culture, Aquaculture 2001. Baton Rouge, Louisiana, USA. The World Aquaculture Society, pp.44-56
  51. Wajsbrot, N., A. Gasith, M. D. Krom and T. M. Samocha, 1990. Effect of dissolved oxygen and the molt stage on the acute toxicity of ammonia to juvenile green tiger prawn Penaeus semisulcatus. Environ. Toxicol. Chem., 9 (4), 497-504
  52. Weirich, C. R., C. L. Browdy, D. Bratvold, B. J. McAbee andA. D. Stokes, 2002. Preliminary characterization of a prototype minimal exchange super-intensive shrimp production system. Proceedings of the IVth Intemational Conference on Recirculating Aquaculture. Virginia Tech University, Blacksburg, Virginia, USA, pp. 255-270
  53. Wasielessy Jr., W., H. Atwood, A. Stokes and C. L. Browdy, 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, 396- 403 https://doi.org/10.1016/j.aquaculture.2006.04.030