DOI QR코드

DOI QR Code

Overcoming taxonomic challenges in DNA barcoding for improvement of identification and preservation of clariid catfish species

  • Piangjai Chalermwong (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Thitipong Panthum (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Pish Wattanadilokcahtkun (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Nattakan Ariyaraphong (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Thanyapat Thong (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Phanitada Srikampa (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Worapong Singchat (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Syed Farhan Ahmad (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Kantika Noito (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Ryan Rasoarahona (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Artem Lisachov (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Hina Ali (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Ekaphan Kraichak (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Narongrit Muangmai (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Satid Chatchaiphan6 (Department of Aquaculture, Faculty of Fisheries, Kasetsart University) ;
  • Kednapat Sriphairoj (Faculty of Natural Resources and Agro-Industry, Kasetsart University) ;
  • Sittichai Hatachote (Faculty of Natural Resources and Agro-Industry, Kasetsart University) ;
  • Aingorn Chaiyes (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Chatchawan Jantasuriyarat (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Visarut Chailertlit (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Warong Suksavate (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Jumaporn Sonongbua (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Witsanu Srimai (Kalasin Fish Hatchery Farm (Betagro)) ;
  • Sunchai Payungporn (Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University) ;
  • Kyudong Han (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Agostinho Antunes (CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto) ;
  • Prapansak Srisapoome (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Akihiko Koga (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Prateep Duengkae (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Yoichi Matsuda (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Uthairat Na-Nakorn (Department of Aquaculture, Faculty of Fisheries, Kasetsart University) ;
  • Kornsorn Srikulnath (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University)
  • Received : 2023.05.09
  • Accepted : 2023.06.23
  • Published : 2023.09.30

Abstract

DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

Keywords

Acknowledgement

The authors are grateful to Chalitra Saysuk (AGB Research Unit, Kasetsart University, Thailand) for helpful discussion. We thank the Center for Agricultural Biotechnology (CAB) at the Kasetsart University Kamphaeng Saen Campus and the NSTDA Supercomputer Center (ThaiSC) for support with server analysis services. We also thank the Faculty of Science for providing research facilities. We also thank the Faculty of Science and the Center for Bio-Medical Engineering Core Facility at Dankook University for providing research facilities. This research was financially supported in part by The National Research Council of Thailand (NRCT) (N42A650233); National Research Council of Thailand : High-Potential Research Team Grant Program (N42A660605) awarded to grant awarded to WSI, SFA, EK, NM, SC, KSR, SH, AC, CJ, VC, WSU, JS, WSR, PS, PD, UN, and KS; a National Science and Technology Development Agency (NSTDA P-19-52238 and JRA-CO-2564-14003-TH) grant awarded to WSI and KS; a Talent Mobility Program under the Office of the Permanent Secretary (OPS) of the Ministry of Higher Education, Science, Research and Innovation (MHESI), Thailand (no. 0224.1/22517) grant awarded to WSI, SFA, and KS; a Higher Education for Industry Consortium (Hi-FI) (6514400949 and 6414400777) grant awarded to PC and NA; a Thailand Science Research and Innovation grant through the Kasetsart University Reinventing University Program 2021 (3/2564) awarded to TP, NA, AL, HA, AA, and KS; the High-Quality Research Graduate Development Cooperation Project between Kasetsart University and the National Science and Technology Development Agency awarded to TP and KS; a Kasetsart University Research and Development Institute grant awarded to WSI, SFA, and KS (FF(S-KU)17.66); and International SciKU Branding (ISB), Faculty of Science, Kasetsart University support awarded to WSI, SFA, and KS.

References

  1. Department of Fisheries, Ministry of Agriculture and Cooperatives. Catfish: production forecast 2022. Accessed 2023 Apr 4. Available from: https://www4.fisheries.go.th/local/index.php/ main/view_activities/1408/110550.
  2. Khedkar GD, Tiknaik AD, Shinde RN, Kalyankar AD, Ron TB, Haymer D. High rates of substitution of the native catfish Clarias batrachus by Clarias gariepinus in India. Mitochondrial DNA A DNA Mapp Seq Anal 2016;27:569-574. https://doi.org/10.3109/19401736.2014.905863
  3. Quilang JP, Yu SC. DNA barcoding of commercially important catfishes in the Philippines. Mitochondrial DNA 2015;26:435-444. https://doi.org/10.3109/19401736.2013.855897
  4. Santos BS, Vesagas FP, Tan MT, Jumawan JC, Quilang JP. Status assessment of Clarias species in the Philippines: insights from DNA barcodes. Sci Diliman 2015;27:21-40.
  5. Haymer DS, Khedkar GD. Biology of selected Clarias catfish species used in aquaculture. Isr J Aquac 2022;74:1-15.
  6. Lisachov A, Nguyen DH, Panthum T, Ahmad SF, Singchat W, Ponjarat J, et al. Emerging importance of bighead catfish (Clarias macrocephalus) and North African catfish (C. gariepinus) as a bioresource and their genomic perspective. Aquaculture 2023; 573:739585.
  7. Bhandarkar SV. Clarias gariepinus: African catfish exotic species endangering native aquatic biodiversity of India. J Emerg Technol Innov Res 2022;9:43-48.
  8. U.S. Fish & Wildlife Service. North African catfish (Clarias gariepinus) ecological risk screening summary. Washington, DC: U.S. Fish & Wildlife Service, 2022. Accessed 2023 Apr 26. Available from: https://www.fws.gov/sites/default/files/documents/ Ecological-Risk-Screening-Summary-North-African-Catfish.pdf.
  9. Othman R, Harmin S, Mat Sout N, Hafiz M, Suliman A, Zan M. Molecular identification of Clarias species based on cytochrome b gene in Peat Swamp Forest, Selangor. In: Asian Fish Biodiversity Conference 2014; 2014 Feb 12-13; Penang, Malaysia.
  10. Ude GN, Igwe DO, Brown C, Jackson M, Bangura A, Ozokonkwo-Alor O, et al. DNA barcoding for identification of fish species from freshwater in Enugu and Anambra States of Nigeria. Conserv Genet Resour 2020;12:643-658. https://doi.org/10.1007/s12686-020-01155-7
  11. Wright JJ. A new diminutive genus and species of catfish from Lake Tanganyika (Siluriformes: Clariidae). J Fish Biol 2017;91: 789-805. https://doi.org/10.1111/jfb.13374
  12. Esmaeili HR, Sayyadzadeh G, Zarei F, Eagderi S, Mousavi-Sabet H. Mystus cyrusi, a new species of bagrid catfish (Teleostei: Bagridae) from Middle East. Zootaxa 2022;5099:325-343. https://doi.org/10.11646/zootaxa.5099.3.2
  13. Bhattacharjee MJ, Laskar BA, Dhar B, Ghosh SK. Identification and re-evaluation of freshwater catfishes through DNA barcoding. PLoS One 2012;7:e49950.
  14. Falade MO, Opene AJ, Benson O. DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria. F1000Res 2016;5:1268.
  15. Wong LL, Peatman E, Lu J, Kucuktas H, He S, Zhou C, et al. DNA barcoding of catfish: species authentication and phylogenetic assessment. PLoS One 2011;6:e17812.
  16. Panthum T, Ariyaphong N, Wattanadilokchatkun P, Singchat W, Ahmad SF, Kraichak E, et al. Quality control of fighting fish nucleotide sequences in public repositories reveals a dark matter of systematic taxonomic implication. Genes Genomics 2023;45:169-181.
  17. Tosin OV, Chong KI, Anuar H, Thumronk A, Sheriff SM. Parentage analysis of the progenies of the reciprocal crosses of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822) using cytochrome b gene. Jordan J Biol Sci 2019;12:107-117.
  18. Sahoo L, Barat A, Sahoo SK, Sahoo B, Das G, Das P, et al. Genetic diversity and population structure of endangered Indian catfish, Clarias magur as revealed by mtDNA D-loop marker. Turk J Fish Aquat Sci 2020;21:9-18. https://doi.org/10.4194/1303-2712-v21_1_02
  19. Parvez I, Rumi RA, Ray PR, Hassan MM, Sultana S, Pervin R, et al. Invasion of African Clarias gariepinus drives genetic erosion of the indigenous C. batrachus in Bangladesh. Biology (Basel) 2022;11:252.
  20. Panprommin D, Manosri R. DNA barcoding as an approach for species traceability and labeling accuracy of fish fillet products in Thailand. Food Control 2022;136:108895.
  21. Zhang DX, Hewitt GM. Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol 1996;11:247-251. https://doi.org/10.1016/0169-5347(96)10031-8
  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018;35:1547-1549. https://doi.org/10.1093/molbev/msy096
  23. Gonzalez DL, Giannerini S, Rosa R. Rumer's transformation: a symmetry puzzle standing for half a century. Biosystems 2020; 187:104036.
  24. Felsenstein J. Distance methods for inferring phylogenies: a justification. Evolution 1984;38:16-24. https://doi.org/10.2307/2408542
  25. Xia X, Xie Z, Salemi M, Chen L, Wang Y. An index of substitution saturation and its application. Mol Phylogenet Evol 2003;26:1-7. https://doi.org/10.1016/S1055-7903(02)00326-3
  26. Xia X. Assessing substitution saturation with DAMBE. In: The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Vol. 2. Cambridge: Cambridge University Press, 2009. pp. 611-626.
  27. Xia X. DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol 2018;35:1550-1552. https://doi.org/10.1093/molbev/msy073
  28. Meier R, Shiyang K, Vaidya G, Ng PK. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 2006;55:715-728. https://doi.org/10.1080/10635150600969864
  29. Hebert PD, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci 2003;270:313-321. https://doi.org/10.1098/rspb.2002.2218
  30. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004;20:289-290. https://doi.org/10.1093/bioinformatics/btg412
  31. Brown SD, Collins RA, Boyer S, Lefort MC, Malumbres-Olarte J, Vink CJ, et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 2012;12:562-565. https://doi.org/10.1111/j.1755-0998.2011.03108.x
  32. R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: R Foundation, 2022. Available from: https://www.R-project.org/.
  33. Ostertagova E, Ostertag O, Kovac J. Methodology and application of the Kruskal-Wallis test. Appl Mech Mater 2014;611:115-120. https://doi.org/10.4028/www.scientific.net/AMM.611.115
  34. Dinno A. Nonparametric pairwise multiple comparisons in independent groups using Dunn's test. Stata J 2015;15:292-300. https://doi.org/10.1177/1536867X1501500117
  35. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012;61:539-542. https://doi.org/10.1093/sysbio/sys029
  36. Tighe AJ, Grayson S, Byrne J, Hintikka S, Jessen L, Dempsey J, et al. Nanopore metatranscriptomics reveals cryptic catfish species as potential Shigella flexneri vectors in Kenya. Sci Rep 2022;12:13875.
  37. Peart CR, Bills R, Wilkinson M, Day JJ. Nocturnal claroteine catfishes reveal dual colonisation but a single radiation in Lake Tanganyika. Mol Phylogenet Evol 2014;73:119-128.  https://doi.org/10.1016/j.ympev.2014.01.013
  38. Watanabe K, Nishida M. Genetic population structure of Japanese bagrid catfishes. Ichthyol Res 2003;50:140-148. https://doi.org/10.1007/s10228-002-0149-z
  39. Zhang J, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013;29:2869-2876. https://doi.org/10.1093/bioinformatics/btt499
  40. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 2006;55:595-609. https://doi.org/10.1080/10635150600852011
  41. Ezenwaji HM. African Clarias taxonomy: implications for the field worker. In: 4th Annual Conference of the Fisheries Society of Nigeria (FISON), 1985 Nov 26-29, Kebbi, Nigeria
  42. Teugels GG, Adriaens D. Taxonomy and phylogeny of Clariidae: an overview. In: Catfishes (Arratia G, Kapoor BG, Chardon M, Diogo R, eds.). California: Science Publishers, 2003. pp. 465-487.
  43. Iswanto B, Suprapto R, Marnis H. Morphological characterization of the African catfish (Clarias gariepinus Burchell, 1822) strains introduced to Indonesia. Indones Aquac J 2015;10:91-99. https://doi.org/10.15578/iaj.10.2.2015.91-99
  44. Wachirachaikarn A, Rungsin W, Srisapoome P, Klinbunga S, Na-Nakorn U. Molecular characterization and expression analysis of Cyclin B and Cell division cycle 2 in gonads of diploid and triploid bighead catfish, Clarias macrocephalus Gunther, 1864. Agric Nat Resour 2017;51:117-130. https://doi.org/10.1016/j.anres.2016.05.004
  45. Banerjee B, Koner D, Hasan R, Bhattacharya S, Saha N. Transcriptome analysis reveals novel insights in air-breathing magur catfish (Clarias magur) in response to high environmental ammonia. Gene 2019;703:35-49. https://doi.org/10.1016/j.gene.2019.04.009
  46. Agarwal D, Gireesh-Babu P, Pavan-Kumar A, Koringa P, Joshi CG, Chaudhari A. Transcriptome analysis of Clarias magur brain and gonads suggests neuro-endocrine inhibition of milt release from captive GnRH-induced males. Genomics 2020;112:4041-4052. https://doi.org/10.1016/j.ygeno.2020.07.012
  47. Muduli C, Rathore G, Singh A, Srivastava R. Identification of reference genes for quantitative expression analysis in Indian catfish, Clarias magur, under physiological and pathological conditions. Aquac Res 2022;53:2785-2795. https://doi.org/10.1111/are.15793
  48. Ratnasingham S, Hebert PD. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes 2007. 7:355-364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  49. Schroeder H, Palczewski S, Degen B. Development of D-Loop mitochondrial markers for amplification of prey DNA from wolf scat. Conserv Genet Resour 2021;13:1-4. https://doi.org/10.1007/s12686-020-01169-1
  50. Tran HT, Tran TN, Tran HN, Nguyen HT. DNA barcoding and phylogenetic relationships of nine catfish species from Mekong Basin, Vietnam. J Mol Biomarks Diagn 2017;8:6. 
  51. Ward RD, Hanner R, Hebert PD. The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 2009;74:329-356. https://doi.org/10.1111/j.1095-8649.2008.02080.x
  52. Schmidt RC, Pezold F. Morphometric and molecular variation in mountain catfishes (Amphiliidae: Amphilius) in Guinea, West Africa. J Nat Hist 2011;45:521-552. https://doi.org/10.1080/00222933.2010.534560
  53. Chen W, Ma X, Shen Y, Mao Y, He S. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Sci Rep 2015;5:17437.
  54. Decru E, Moelants T, De Gelas K, Vreven E, Verheyen E, Snoeks J. Taxonomic challenges in freshwater fishes: a mismatch between morphology and DNA barcoding in fish of the north-eastern part of the Congo basin. Mol Ecol Resour 2016;16:342-352. https://doi.org/10.1111/1755-0998.12445
  55. Ng HH, Kottelat M. The identity of Clarias batrachus (Linnaeus, 1758), with the designation of a neotype (Teleostei: Clariidae). Zool J Linnean Soc 2008;153:725-732. https://doi.org/10.1111/j.1096-3642.2008.00391.x
  56. Ozouf-Costaz C, Teugels GG, Legendre M. Karyological analysis of three strains of the African catfish, Clarias gariepinus (Clariidae) used in aquaculture. Aquaculture 1990;87:271-277. https://doi.org/10.1016/0044-8486(90)90064-T
  57. Teugels GG, Ozouf-Costaz C, Legendre M, Parrent M. A karyological analysis of the artificial hybridization between Clarias gariepinus (Burchell, 1822) and Heterobranchus longiflis Valenciennes, 1840 (Pisces; Clariidae). J Fish Biol 1992;40:81-86. https://doi.org/10.1111/j.1095-8649.1992.tb02555.x
  58. Eyo JE. Cytogenetic variations in Clarias species (Clariidae: Surulifromis) of the Anambra River using leucocytes culture techniques. Anim Res Int 2005;2:275-286.
  59. Liu S, Yao Z, Wang Y. Sex hormone induction of sex reversal in the teleost Clarias lazera and evidence for female homogamety and male heterogamety. J Exp Zool 1996;276:432-438. https://doi.org/10.1002/(SICI)1097-010X(19961215)276:6<432::AID-JEZ7>3.0.CO;2-O
  60. Eding E, Bouwmans A, Komen J. Evidence for a XX/XY sex determining mechanism in the African catfish Clarias gariepinus. In: The 6th International Symposium on Genetics in Aquaculture, 1997 Jun 23-28, Stirling, Scotland, UK.
  61. Galbusera P, Volckaert FA, Ollevier F. Gynogenesis in the African catfish Clarias gariepinus (Burchell, 1822): III. Induction of endomitosis and the presence of residual genetic variation. Aquaculture 2000;185:25-42. https://doi.org/10.1016/S0044-8486(99)00339-7
  62. Nguyen DH, Panthum T, Ponjarat J, Laopichienpong N, Kraichak E, Singchat W, et al. An investigation of ZZ/ZW and XX/XY sex determination systems in North African catfish (Clarias gariepinus). Front Genet 2020;11:562856.
  63. Turan C, Yalcin S, Turan F, Okur E, Akyurt I. Morphometric comparisons of African catfish, Clarias gariepinus, populations in Turkey. Folia Zool 2005;54:165-172.
  64. Pouyaud L, Paradis SE. The phylogenetic structure of habitat shift and morphological convergence in Asian Clarias (Teleostei, Siluriformes: Clariidae). J Zool Syst Evol Res 2009;47:344-356. https://doi.org/10.1111/j.1439-0469.2008.00507.x
  65. Del Castillo RF, Trujillo-Argueta S, Sanchez-Vargas N, Newton AC. Genetic factors associated with population size may increase extinction risks and decrease colonization potential in a keystone tropical pine. Evol Appl 2011;4:574-588. https://doi.org/10.1111/j.1752-4571.2010.00177.x
  66. Tweddle D, Bills R, Swartz E, Coetzer W, Da Costa L, Engelbrecht J, et al. The status and distribution of freshwater fishes. In: The Status and Distribution of Freshwater Biodiversity in Southern Africa (Darwall WR, Smith KG, Tweddle D, Skelton P, eds.). Gland: IUCN, 2011. pp. 21-37.
  67. Wheeler D, Bhagwat M. BLAST QuickStart: example-driven webbased BLAST tutorial. Methods Mol Biol 2007;395:149-176. https://doi.org/10.1007/978-1-59745-514-5_9
  68. Meiklejohn KA, Damaso N, Robertson JM. Assessment of BOLD and GenBank: their accuracy and reliability for the identification of biological materials. PLoS One 2019;14:e0217084.
  69. Pentinsaari M, Ratnasingham S, Miller SE, Hebert PDN. BOLD and GenBank revisited: do identification errors arise in the lab or in the sequence libraries? PLoS One 2020;15:e0231814.