• Title/Summary/Keyword: Hash-Chain based Protocol

Search Result 22, Processing Time 0.026 seconds

Improved Tree-Based ${\mu}TESLA$ Broadcast Authentication Protocol Based on XOR Chain for Data-Loss Tolerant and Gigh-Efficiency (데이터 손실에 강하고 효율적 연산을 지원하는 XOR 체인을 이용한 트리기반 ${\mu}TESLA$ 프로토콜 개선)

  • Yeo, Don-Gu;Jang, Jae-Hoon;Choi, Hyun-Woo;Youm, Heung-Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.2
    • /
    • pp.43-55
    • /
    • 2010
  • ${\mu}TESLA$ broadcast authentication protocol have been developed by many researchers for providing authenticated broadcasting message between receiver and sender in sensor networks. Those cause authentication delay Tree-based ${\mu}TESLA$[3] solves the problem of authentication delay. But, it has new problems from Merkel hash tree certificate structure. Such as an increase in quantity of data transmission and computation according to the number of sender or parameter of ${\mu}TESLA$ chain. ${\mu}TPCT$-based ${\mu}TESLA$[4] has an advantages, such as a fixed computation cost by altered Low-level Merkel has tree to hash chain. However, it only use the sequential values of Hash chain to authenticate ${\mu}TESLA$ parameters. So, It can't ensure the success of authentication in lossy sensor network. This paper is to propose the improved method for Tree-based ${\mu}TESLA$ by using XOR-based chain. The proposed scheme provide advantages such as a fixed computation cost with ${\mu}$TPCT-based ${\mu}TESLA$ and a message loss-tolerant with Tree-based ${\mu}TESLA$.

Secure routing security algorithm S-ZRP used Zone Routing Protocol in MANET (MANET환경에서 Zone Routing Protocol을 이용한 안전한 경로설정 보안 알고리즘 S-ZRP)

  • Seo Dae-Youl;Kim Jin-Chul;Kim Kyoung-Mok;Oh Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.13-21
    • /
    • 2006
  • An mobile ad hoc network(MANET) is a collection of wireless computers (nodes), communicating among themselves over multi-hop paths, without the help of any infrastructure such as base stations or access points. Prior research in MANET has generally studied the routing problem in a non-adversarial setting, assuming a trusted environment. In this paper, we design and evaluate the Secure Zone Routing Protocol(T-ZRP), a secure ad hoc network routing protocol is based on the design of the hash chain. In order to support use with nodes of limited CPU processing capability, and to guard against Denial-of-Service attacks in which an attacker attempts to cause other nodes to consume excess network bandwidth or processing time, we use efficient one-way hash functions and don't use asymmetric cryptographic operations in the protocol. Proposed algorithm can safely send to data through authentication mechanism and integrity about routing establishment.

Secure and Efficient Database Searching in RFID Systems using Tag-Grouping Based on Hash-Chain (RFID 시스템에서 Hash-Chain기반 Tag-Grouping을 이용한 안전하고 효율적인 데이터베이스 검색)

  • Lee, Byeung-Ju;Song, Chang-Woo;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.9-17
    • /
    • 2009
  • RFID (Radio Frequency Identification) is a next generation technology that will replace barcode. RFID can identify an object by reading ID inside a RFID tag using radio frequency. However, because a RFID tag replies its unique ID to the request of any reader through wireless communication, it is vulnerable to attacks on security or privacy through wiretapping or an illegal reader's request. The RFID authentication protocol has been studied actively in order to solve security and privacy problems, and is used also in tag search. Recently, as the number of tags is increasing in RFTD systems and the cost of data collection is also rising, the importance of effective tag search is increasing. This study proposed an efficient search method that solved through ta9 group the problem of large volume of database computation in Miyako Ohkubo's hash chain mechanism, which meets requirements for security and privacy protection. When we searched first the group of tags with access rate of 5 or higher in a database with 100,000 records, search time decreased by around 30%.

Design of Divisible Electronic Cash based on Double Hash Chain (이중해쉬체인에 기반한 분할 가능 전자화폐의 설계)

  • 용승림;이은경;이상호
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.408-416
    • /
    • 2003
  • An electronic cash system has to provide the security, to prevent the double spending and to support the divisibility of electronic cash for the easy of use. Divisible electronic cash system allows an electronic cash to be divided into subdivisions. Each subdivision is worth any desired value, but all values must add up to the original cash value. Divisible scheme brings some advantages. It reduces to make the change and also there is no necessity that a customer must withdraw a cash of the desired value whenever transactions occur. In this paper, we present an electronic cash protocol which provides the divisibility based on the double hash chain technique. Electronic cash is constructed in the form of coins. Coins, generated by the double hush chain, have different denominations. The divisibility based on the double hash chain technique. Electronic cash is constructed in the form of coins. Coins, generated by the double hash chain, have different denominations. The divisibility of an electronic cash is satisfied by the payment certificate, which is a pair of bank´s proxy signature received from the bank. When a customer pays the coin of subdivision, the fairness of that coin is certified by a customer´s signing instead of a bank. Although the proposed method does not guarantee user´s anonymity, it generates coins which cannot be forged, and the customer can use an electronic cash conveniently and efficiently with its divisibility.

A Secure Protocol for Location-Aware Services in VANETs (VANET에서 안전한 위치인지 서비스를 위한 보안 프로토콜)

  • Sur, Chul;Park, Youngho;Rhee, Kyung Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.11
    • /
    • pp.495-502
    • /
    • 2013
  • In this paper, we present an anonymous authentication and location assurance protocol for secure location-aware services over vehicular ad hoc networks (VANETs). In other to achieve our goal, we propose the notion of a location-aware signing key so as to strongly bind geographic location information to cryptographic function while providing conditional privacy preservation which is a desirable property for secure vehicular communications. Furthermore, the proposed protocol provides an efficient procedure based on hash chain technique for revocation checking to effectively alleviate communication and computational costs on vehicles in VANETs. Finally, we demonstrate comprehensive analysis to confirm the fulfillment of the security objectives, and the efficiency and effectiveness of the proposed protocol.

A Design of Hadoop Security Protocol using One Time Key based on Hash-chain (해시 체인 기반 일회용 키를 이용한 하둡 보안 프로토콜 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.340-349
    • /
    • 2017
  • This paper is proposed Hadoop security protocol to protect a reply attack and impersonation attack. The proposed hadoop security protocol is consists of user authentication module, public key based data node authentication module, name node authentication module, and data node authentication module. The user authentication module is issued the temporary access ID from TGS after verifing user's identification on Authentication Server. The public key based data node authentication module generates secret key between name node and data node, and generates OTKL(One-Time Key List) using Hash-chain. The name node authentication module verifies user's identification using user's temporary access ID, and issues DT(Delegation Token) and BAT(Block Access Token) to user. The data node authentication module sends the encrypted data block to user after verifing user's identification using OwerID of BAT. Therefore the proposed hadoop security protocol dose not only prepare the exposure of data node's secret key by using OTKL, timestamp, owerID but also detect the reply attack and impersonation attack. Also, it enhances the data access of data node, and enforces data security by sending the encrypted data.

E-mail System Model based on Ethereum (이더리움 기반 이메일 시스템 모델)

  • Kim, Taekyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.99-106
    • /
    • 2017
  • With the advent of virtual money such as bit coins, interest in the block chain is increasing. Block Chain is a technology that supports Distributed Ledger and is a versatile technology applicable to various fields. Currently, the block chain is conducting research for various applications such as virtual money, trade finance, marketplace, power market, image contents service, and IoT. The technologies that make up the block chain are smart contract, digital signature/hash function and consensus algorithm. And these technologies operate on P2P networks. In this paper, we have studied e-mail system based on the ethereum which is one of the block chain based technologies. Most legacy mail systems use SMTP and the POP3/IMAP protocol to send and receive e-mail, and e-mail use S/MIME to protect the e-mail. However, S/MIME is vulnerable to DDoS attacks because it is configured centrally. And it also does not provide non-repudiation of mail reception. To overcome these weaknesses, we proposed an e-mail system model based on ethereum. The proposed model is able to cope with DDoS attack and forgery prevention by using block chain based technology, and reliable recording and management among block chain participants are provided, so that it is possible to provide a non-repudiation function of e-mail transmission and reception.

Improvements of a Group key Management based on (2,2) Secret Sharing

  • Yong, Seunglim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.73-78
    • /
    • 2016
  • In 2014, Wuu et al. proposed a group key management scheme based on (2,2) secret sharing. They asserted that their scheme satisfies security requirements and mutual authentication. But this paper pointed out that their scheme does not satisfy mutual authentication and impersonating attack. In this paper, we describe the reasons and processes that a malicious group member can impersonate the Group Key Distributor. To fill the gaps, we discuss the problems, and propose an improved protocol.

A Lightweight Mutual Authentication Protocol based Hash Chain for RFID Systems (RFID을 위한 해시 체인 기반을 이용한 경량화 상호 인증 프로토콜)

  • Lee, Gi-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.393-396
    • /
    • 2010
  • 이 시스템은 무선 주파수와 RFID 태그 사용으로 불법적인 위변조, 도��, 추적, 프라이버시 침해 등은 불가피하다. 따라서 본 논문에서는 리더와 태그 및 데이터베이스 간에 해시 체인을 이용하여 키를 생성한다. 키 정보를 전송 메시지에 추가하지 않기 때문에 공격자는 키를 획득할 수 없으며 간단한 논리 연산과 카운터만을 사용하기 때문에 저전력 RFID 시스템에 적합하다.

  • PDF

Tag Identification Time Reduction Scheme of Back-End Server for Secure RFID Privacy Protection Protocol (안전한 RFID 프라이버시 보호 프로토콜을 위한 백엔드 서버의 태그 판별 시간 절감 기법)

  • Yeo Sang-Soo;Kim Soon-Seok;Kim Sung-Kwon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.13-26
    • /
    • 2006
  • RFID technology is evaluated as one of core technologies for ubiquitous environment, because of its various characteristics which barcode systems don't have. However, RFID systems have consumer's privacy infringement problems, such like information leakage and location tracing. We need RFID privacy protection protocols, that satisfy three essential security requirements; confidentiality, indistinguishability and forward security, in order to protect consumer's privacy perfectly. The most secure protocol, that satisfies all of the three essential security requirements, among existing protocols, is the hash-chain based protocol that Ohkubo proposed. Unfortunately this protocol has a big disadvantage that it takes very long time to identify a tag in the back-end server. In this paper, we propose a scheme to keep security just as it is and to reduce computation time for identifying a tag in back-end server. The proposed scheme shows the results that the identification time in back-end server is reduced considerably compared to the original scheme of Ohkubo protocol.