• 제목/요약/키워드: HTS Power Cable

검색결과 216건 처리시간 0.022초

고온 초전도 케이블 시스템 설치 밀 운전을 위한 연구 (Research for Installation and Operation of High Temperature Superconducting Cable System)

  • 최형식;손송호;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.653-657
    • /
    • 2005
  • The commercial contract was made firstly in the world for one set of high temperature superconducting(HTS) cable system between buyer, Korea Electric Power Research Institute and seller, Sumitomo Electric Industries, Ltd. in August 2004. After fabrication, test and examination, the HTS cable system will be installed at the KEPRI's test field in Gochang, Jeonbuk province from the time of July 2005. KEPRI is preparing measurement and test facilities for field test of the HTS cable system and carrying out researches into the design and construction of superconducting cable test building, evaluation of cooling performance, measurement of AC loss, analysis of the quench phenomena due to excess current and means of linking the HTS cable system to the existing electric power supplying system. The constitution of, the method to install and the plan of test operation of the HTS cable system will be presented in this paper.

  • PDF

초전도케이블 냉각시험 (Cooling Test of The HTS Power Cable)

  • 염한길;고득용;홍용주;김익생;김춘동;김도형
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.295-297
    • /
    • 2003
  • Cryogenic systems is requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen or sub-cooled LN2. HTS power cable is needed for sufficient refrigeration to overcome its low temperature heat loading. This loading typically comes in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper is a explanation for the cooling test of 10m HTS power cable.

  • PDF

700A급 고온초전도 케이블코아 제작 및 평가 (Construction and Tests of 700A class HTS Power Cable Core)

  • 조전욱;하홍수;정종만;조영식;성기철;오상수;권영길;류강식
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.55-57
    • /
    • 2000
  • In this paper we present the results of tests for the high-Tc superconducting (HTS) power cable core. A prototype HTS cable cores have been constructed using Bi-2223 based Ag-sheathed HTS tapes. HTS cable cores has been tested at 77K with DC currents. Results shows that the cable cores carrying up to 700A DC and self-field effects are discussed.

  • PDF

고온초전도 케이블 단말용 cryostat 설계 (Design of Termination Cryostat for HTS Power Cable)

  • 양형석;김승현;김동락;조승연;김도형;류희석;성기철
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.160-162
    • /
    • 2003
  • Termination cryostat for 22.9kV, 1.26kA-class HTS power cable has been designed. The cryostat consists of vacuum vessel, liquid nitrogen vessel, current lead and HTS power cable. The current lead and the HTS power cable are connected in liquid nitrogen vessel cooled by forced-circulation subcooled liquid nitrogen. The maximum total heat load of this cryostat is expected to be 150w. In this paper, the detailed design of the termination cryostat is mentioned.

  • PDF

Parametric Study of AC Current Lead for the Termination of HTS Power Cable

  • Kim, D.L;Kim, S.H.;S. Cho;H.S. Yang;Kim, D.H.;H.S. Ryoo;K.C. Seong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.107-110
    • /
    • 2003
  • High Temperature Superconductor (HTS) transmission cable can carry more than 2 to 5 times higher electricity and also obtain substantially lower transmission losses than conventional cables. Liquid nitrogen is to be used to cool the HTS power cable and its cost is much cheaper than the liquid helium used for the cooling of metal superconducting wire. In Korea the HTS power cable development project has been ongoing since July, 2001 with the basic specifications of 22.9kV, 50MVA and told dielectric type as the first 3-year stage. The cryogenic system of the HTS cable is composed of HTS cable cryostat termination and refrigeration system. Termination of HTS cable is a connecting part between copper electrical cable at room temperature and HTS cable at liquid nitrogen temperature. In order to design the termination cryostat, it is required that the conduction heat leak and Joule heating on the current lead be reduced, the cryostat be insulated electrically and good vacuum insulation be maintained during long time operation. Heat loads calculations on the copper current lead have been performed by analytical and numerical method and the feasibility study fer the other candidate materials has also been executed.

고온초전도 전력케이블의 냉각조건 (Cooling Condition of HTS Power Cable)

  • 김동락;김승현;양형석;조승연;이제묘
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.35-36
    • /
    • 2002
  • High temperature super conducting(HTS) cable system for power transmission are under development that will be cooled by sub-cooled liquid nitrogen to provide cooling of the cable and termination. The target of the development during the first 3-years stage is 22.9kV/50MVA class and 30m length cold dielectric type 3-phase power cable. The essential features of the HTS cable cryogenic system and performance conditions for the design of power cable will be discussed.

  • PDF

Design and Operational Test of 22.9kV, 30m, 3phase HTS Cable Cooling System

  • Kim Do-Hyung;Kim Choon-Dong;Park In-Son;Jang Hyun-Man;Lee Su-Kil
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권2호
    • /
    • pp.46-49
    • /
    • 2006
  • The 30m, 3phase, 22.9kV HTS (High Temperature Superconducting) power cable system was produced by LS Cable Ltd. The project aims for a commercial HTS cable. The designing, the manufacturing and the initial operating of HTS cable system were completed by 2004. Then, we have performed a long term operational test since February, 2005. This paper mainly reports the result of the HTS cable cooling operation.

초전도 케이블의 Quench 특성에 대한 계통안전성 제어방식 (Power System Security Control Method for Quench Characteristic of High-Temperature Superconducting Cable)

  • 이근준;황시돌
    • 조명전기설비학회논문지
    • /
    • 제19권6호
    • /
    • pp.29-35
    • /
    • 2005
  • 본 논문은 고온 초전도 케이블을 전력계통의 송전용량 증대를 위해 적용시켰을 경우, 고장발생시 초전도케이블에서 예상되는 ??????치의 영향에 대해 안전하게 제어할 수 있는 방법을 제시하였다. 접근 방법으로는 초전도케이블의 ??????치 특성을 열평형 방정식으로 모델링하고 그 결과 고장전류에 따른 케이블의 설계 최대 온도상승한계에 도달하는 시간을 산출하여 기존의 보호계전시스템의 차단시간과 비교함으로서 안전성 여부를 판정하였다. ??????치발생 고장시간을 모의하기 위해 초전도케이블용 EMTDC모형을 개발하였으며, 모의 결과 초전도 케이블 계통을 보호할 수 있는 안전성 제어방식이 설계 가능함을 보였다.

고온초전도 전력케이블 개발동향 및 국내의 연구개발 방향 (The Present Technical Trend and the Future Direction of HTS Power Cable R&D)

  • 황시돌;현옥배;최효상;김혜림;김상준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2054-2056
    • /
    • 1999
  • We surveyed the recent technical trends concerning high-Tc superconducting(HTS) Power cable R&D around the world, and proposed the course the HTS power cable R&D in Korea should take. The HTS power cable R&D in Korea need be started as soon as posible with focusing on the development and field test of the economical HTS conductors.

  • PDF

초전도 전력기기의 계통적용을 위한 실시간 시뮬레이션 기법 개발 (PART 1 : 고온초전도 전력 케이블) (Development of a Real-time Simulation Method for the Utility Application of Superconducting power Devices (PART 1 : HIS Power Cable))

  • 김재호;박민원;박대진;강진주;조전욱;심기덕;유인근
    • 한국전기전자재료학회논문지
    • /
    • 제19권11호
    • /
    • pp.1055-1060
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Since HTS power cable is capable of the high current density delivery with low power loss, the cable size can be compact comparing with the conventional cable whose capacity is same. In this paper, the authors propose the real time simulation method which puts a teal HTS wire into the simulated 22.9 kV utility grid system using Real Time Digital Simulator (RTDS). For the simulation analysis, test sample of HTS wire was actually manufactured. And the transient phenomenon of the HTS wire was analyzed in the simulated utility power grid. This simulation method is the world first trial in order to obtain much better data for installation of HTS power device into utility network.