• Title/Summary/Keyword: HPBW(Half Power Beam Width)

Search Result 14, Processing Time 0.02 seconds

Analysis of Axially Displaced Ellipse Gregorian Dual Reflector Antennas (축이동 그레고리안 이중 반사경 안테나의 해석)

  • 임성빈;최경국;최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1161-1169
    • /
    • 2003
  • In this paper, ADE(Axially Displaced Ellipse) Gregorian dual reflector antennas, which are the special form of Gregorian dual reflector antennas, were analyzed. In the procedure of antenna analysis, the aperture field distribution was obtained by using the geometrical optics and their far-field radiation characteristics were analyzed by using the aperture field method. The analysis results such as antenna efficiency, HPBW(Half Power Beam Width), FNBW(First Null Beam Width), and FSL(First Sidelobe Level) were presented as functions of edge taper and size of main reflector and subreflector. From the results in this paper, we could confirm that ADE reflector antennas have the different radiation characteristics from the classical dual reflector antennas.

Underwater E-plane Attenuation Model of Omnidirectional Antenna Using Half Power Beam Width (HPBW) (반전력빔폭을 이용한 전방향성 안테나의 수중 환경 수직 평면 감쇠 모델)

  • Kwak, Kyungmin;Park, Daegil;Kim, Younghyeon;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1050-1056
    • /
    • 2015
  • In this paper, we use the characteristics of electromagnetic waves underwater attenuation for estimating linear distance between a transmitting node and receiving node, and research underwater vertical plane attenuation model for constructing the underwater localization system. The underwater localization of 2 dimensional with the plane attenuation model in the horizontal plane (H-plane) was proposed previous research. But for the 3 dimensional underwater localization, the additional vertical plane (E-plane) model should be considered. Because the horizontal plane of omnidirectional antenna has the same attenuation tendency in x-y plane according to the distance, whereas in vertical plane shows an irregular pattern in x-z plane. For that reason, in the vertical plane environment, the attenuation should be changed by the position and inclination. Hence, in this paper the distance and angle between transmitting and receiving node are defined using spherical coordinate system and derive an antenna gain pattern using half power beam width (HPBW). The HPBW is called a term which defines antenna's performance between isotropic and other antennas. This paper derives omnidirectional antenna's maximum gain and attenuation pattern model and define vertical plane's gain pattern model using HPBW. Finally, experimental verifications for the proposed underwater vertical plane's attenuation model was executed.

Optimal Shape Design of Dual Reflector Antenna Based on Genetic Algorithm (유전 알고리즘 기반의 이중 반사경 안테나 형상최적화 기법)

  • Park, Jung-Geun;Chung, Young-Seek;Kang, Won-June;Shin, Jin-Woo;So, Joon-Ho;Cheon, Chang-Yul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.445-454
    • /
    • 2015
  • In this paper, we propose an optimal design method for a dual reflector antenna(DRA) using the Genetic algorithm. In order to reduce the computational burden during the optimal design, we exploit the iterative physical optics(IPO) to calculate the surface current distribution at each reflector antenna. To improve the accuracy, we consider the shadow effect by the structure and the coupling effect by the multi-reflection based on the iterative MFIE(Magnetic Field Integral Equation). To reduce the number of design variables and generate a smooth surface, we use the Bezier function with the control points, which become the design variables in this paper. We adopt the HPBW(Half Power Beam Width), the FNBW(First Null Beam Width), and the SLL(Side Lobe Level) as the objective or cost functions. To verify the results, we compare them with the those of the commercial tool.

The Design of a K-Band 4$\times$4 Microstrip Patch Array Antennas with High Directitvity (고지향성 구현을 갖는 K-밴드 4$\times$4 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee, Ha-Young;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.161-166
    • /
    • 2007
  • In this paper, two 4$\times$4 rectangular patch array antennas operating at 20 GHz are implemented for the satellite communication. The sixteen patch antennas and microstrip feeding line are printed on a single-layered substrate. The design goal is to achieve high directivity and gain by optimizing design parameters through permutations in element spacing. The spacing between the array elements is chosen to be 0.736$\lambda$. Numerical simulation results indicate that the HPBW(Half-Power Beam Width) of the 4$\times$4 patch array antenna is 18.78 degrees in the E-plane and 18.48 degrees in the H-plane with a gain of 17.18 dBi. Numerical simulations of a 4$\times$4 recessed patch array antenna yield a HPBW of 18.71 degrees in the E-plane and 17.82 degrees in the H-plane with a gain of 19.43 dBi.

Reconfigurable Beam Steering Antenna Using Superposed Beam of Double Loops (이중 루프의 중첩 빔을 이용한 재구성 빔 조향 안테나)

  • Kim, Jae-Young;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.934-940
    • /
    • 2011
  • A novel reconfigurable beam steering antenna using double loops is proposed. The double loop antenna has a superposed beam which is produced by combining the in-phase beam in the inner loop with the out-of-phase beam in the outer loop. Also, the doble loop antenna uses two artificial switches to connect between inner loop and outer loop, and has the beam directions of three separate cases(Case 1, Case 2, Case 3) by changing ON/OFF states of switches. The operation frequency of the antenna is 14.5 GHz, and three maximum beam directions of the antenna are ${\phi}_{max}=0^{\circ}$, ${\theta}_{max}=0^{\circ}$(Case 1), ${\phi}_{max}=230^{\circ}$, ${\theta}_{max}=40^{\circ}$(Case 2) and ${\phi}_{max}=130^{\circ}$, ${\theta}_{max}=40^{\circ}$ (Case 3). The peak gains of each case are 6.5 dBi(Case 1), 7.6 dBi(Case 2) and 7.8 dBi(Case 3). The half power beam width(HPBW) of each case is $86{\sim}104^{\circ}$, and the overall HPBW is $160^{\circ}$.

The Design of $4{\times}4$ Microstrip Patch Array Antenna of K-Band for the High Gain (고이득 구현을 위한 K-밴드 $4{\times}4$ 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee Ha-Young;Braunstein Jeffrey;Kim Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.193-196
    • /
    • 2006
  • In this paper, two $4{\times}4$ rectangular patch array antennas operated at 20 GHz are implemented for the satellite communication. Two $2{\times}2$ sub-arrays are designed and used for the design of $4{\times}4$ patch array. The sixteen patch antennas and microstrip feeding line are printed on the single-layered substrate. The spacing between the array elements is chosen to be $0.736{\lambda}$. The HPBW(Half Power Beam Width) of the $4{\times}4$ microstrip patch array is 17.01 degrees in the E-plane and 17.71 degrees in the H-plane with a gain of 11.6dB in the experimental results. The HPBW of the recessed $4{\times}4$ microstrip patch array is 18.66 degrees in E-plane and 17.12 degrees in the H-plane with a gain of 12.55dB in the experimental results.

  • PDF

The Design of $4{\times}4$ Microstrip Patch Array Antenna of K-Band for the High Directivity (고지향성 구현을 위한 K-밴드 $4{\times}4$ 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee, Ha-Young;Braunstein, Jeffrey;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1613-1614
    • /
    • 2006
  • In this paper, a $4{\times}4$ rectangular patch array antenna operated at 20 GHz is implemented for the satellite communication. Two $2{\times}2$ subarrays are designed and more efficient $2{\times}2$ subarray is used for the design of $4{\times}4$ patch array. The sixteen patch antennas and microstrip feeding line are printed on the single-layered substrate. The spacing between the array elements is chosen to be $0.736{\lambda}$. HPBW (Half-Power Beam Width) is 17.6 degrees in the E-plane and 18.7 degrees in the H-plane with a gain of 17.2SdBi in the simulation results.

  • PDF

A Development of Radar Altimeter Frequency Converter and Ku-Band Antenna for a Missile (유도무기용 전파고도계 주파수변환기 및 Ku-대역 안테나 개발)

  • Kim, Taehoon;Roh, Jin-Eep
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.833-840
    • /
    • 2013
  • A radar altimeter which measures the distance using radio wave developed by domestic technology has been applied to various missiles. It is used also for calculating the error of integrated navigation technique. There are a couple of methods to reduce the error but in this paper, we proposed to utilize existing C-band radar altimeter main body with frequency conversion. We designed and manufactured the frequency converter and Ku-band antenna to accomplish this goal. From the test results of products' function and performance, we could expect the possibility of applying this method to enhance the missiles' integrated performance.

High Gain and Broadband SAP Antenna with Two Parasitic Patches (두 개의 기생 패치를 갖는 고 이득.광대역 SAP 안테나)

  • Kim, Jung-Han;Kim, Yong-Jin;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.930-936
    • /
    • 2007
  • In this paper, the high gain and broadband antenna operating for SDMB(Satellite Digital Multimedia Broadcasting) system is realized, The proposed antenna consists of the SAP(Shorted Annular Patch) structure, which inhibits surface-wave and the parasitic SAP element with spacing of $0.25 {\lambda}_0$ in order to improve gain, bandwidth and directivity. The RHCP(Right Hand Circular Polarization) is generated by two slits, which are made along the periphery of the circular patch at the diametrically opposite points, The simulated maximum gain of the proposed antenna is 12.6 dBi, which is better 5.22 dBi than maximum gain of the conventional microstrip patch antenna. The measured maximum gain is 10.5dBi at operating frequency 2.63GHz. Also, the measured impedance bandwidth$(VSWR{\leq}2)$ of the proposed antenna is $360MHz(2.488{\sim}2.848 GHz)$, which is better 300 MHz than the bandwidth of the conventional microstrip patch antenna. The measured HPBW(Half Power Beam Width) of the proposed antenna is $45.8^{\circ}$, and the measured FBR(Front to Back Ratio) is 15.49 dBi, The 3dB axial ratio bandwidth is 220 MHz$(2.54{\sim}2.76 GHz)$.

Performance evaluation using BER/SNR of wearable fabric reconfigurable beam-steering antenna for On/Off-body communication systems (On/Off-body 통신시스템을 위한 직물소재 웨어러블 재구성 빔 스티어링 안테나의 BER/SNR 성능 검증)

  • Kang, Seonghun;Jeong, Sangsoo;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4842-4848
    • /
    • 2015
  • This paper presents a comparison of communication performance between the reconfigurable beam-steering antenna and the omni-directional (loop) antenna during standstill and walking motion. Both omni-directional and reconfigurable antennas were manufactured on the same fabric (${\varepsilon}_r=1.35$, $tqn{\delta}=0.02$) substrate and operated around 5 GHz band. The reconfigurable antenna was designed to steer the beam directions. To implement the beam-steering capability, the antenna used two PIN diodes. The measured peak gains were 5.9-6.6 dBi and the overall half power beam width (HPBW) was $102^{\circ}$. In order to compare the communication efficiency, both the bit error rate (BER) and the signal-to-noise ratio (SNR) were measured using a GNU Radio Companion software tool and user software radio peripheral (USRP) devices. The measurement were performed when both antennas were standstill and walking motion in an antenna chamber as well as in a smart home environment. From these results, the performances of the reconfigurable beam steering antenna outperformed that of the loop antenna. In addition, in terms of communication efficiencies, in an antenna chamber was better than in a smart home environment. In terms of movement of antennas, standstill state has better results than walking motion state.