• 제목/요약/키워드: HOX

검색결과 67건 처리시간 0.032초

새로운 동물계통 (New Animal Phylogeny)

  • Kim, Chang-Bae;Kim, Won
    • Animal Systematics, Evolution and Diversity
    • /
    • 제17권2호
    • /
    • pp.263-275
    • /
    • 2001
  • 전통적인 동물의 계통수는 초기발생 형질들에 기초하여 몸 구조의 복잡성에 따라 동물문들을 단순한 동물에서 복잡한 동물 순으로 점진적으로 배열하는 것인데 현재 활발히 연구되는 분자계통 연구들이 이 경향을 재평가하고 새로운 계통과 의미를 제시하고 있다. 주로 18S rRNA 에 의한 분자계통에 의하면 무체강동물과 의체강동물과 같이 진체강동물로의 전이단계에 위치했던 무리들이 서로 나뉘어진 진체강동물 안에 속하게 된다. 이러한 새로운 분자계통은 좌우대칭동물의 공동조사에 대한 새로운 가정들을 세울 수 있는 뼈대와 비교발생학 및 비교유전체학 정보가 해석될 수 있는 토대를 제공한다.

  • PDF

Binding Properties and Structural Predictions of Homeodomain Proteins CDX1/2 and HOXD8

  • Park, So-Young;Jeong, Mi-Suk;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2325-2331
    • /
    • 2011
  • Human CDX1 and CDX2 genes play important roles in the regulation of cell proliferation and differentiation in the intestine. Hox genes clustered on four chromosomal regions (A-D) specify positional signaling along the anterior-posterior body axis, including intestinal development. Using glutathione S-transferase (GST) pulldown assays, molecular interaction measurements, and fluorescence measurements, we found that the homeodomains (HDs) of CDX1 and CDX2 directly interact with that of HOXD8 in vitro. CDX1 showed significant affinity for HOXD8, but CDX2 showed weak affinity for HOXD8. Thus far, three-dimensional structures of CDX1/2 and HOXD8 have not been determined. In this study, we developed a molecular docking model by homology modeling based on the structures of other HD members. Proteins with mutations in the HD of CDX1 (S185A, N190A, T194A, and V212A) also bound to the HD of HOXD8. Our study suggests that the HDs of CDX1/2 resemble those of HOXD8, and we provide the first insight into the interaction between the HDs of CDX1/2 proteins and those of HOXD8.

Presence of Proboscipedia and Caudal Gene Homologues in a Bivalve Mollusc

  • Carpintero, Pablo;Pazos, Antonio Juan;Abad, Marcelina;Sanchez, Jose Luis;De La Luz Perez-Paralle, Maria
    • BMB Reports
    • /
    • 제37권5호
    • /
    • pp.625-628
    • /
    • 2004
  • Homeobox genes encode a family of transcription factors that have essential roles in regulating the development of eukaryotes. Although they have been extensively studied in different phyla, relatively little is known about homeobox-containing genes and their function in molluscs. In this study, we used a polymerase chain reaction to investigate homeobox genes in the bivalve mollusc Pecten maximus. Four different homeobox sequences were identified; two were homologues of the non-Hox cluster gene caudal and the two remaining sequences had a significant homology to the ANT-C gene proboscipedia. These sequences represent the first cad and pb homologues isolated from a member of the class Bivalvia, phylum Mollusca.

Overexpression of Long Non-Coding RNA HOTAIR Promotes Tumor Growth and Metastasis in Human Osteosarcoma

  • Wang, Bo;Su, Yun;Yang, Qun;Lv, Decheng;Zhang, Weiguo;Tang, Kai;Wang, Hong;Zhang, Rui;Liu, Yang
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.432-440
    • /
    • 2015
  • Human osteosarcoma usually presented a high tendency to metastatic spread and caused poor outcomes, however, the underlying mechanism was still largely unknown. In the present study, using a series of in vitro experiments and an animal model, we investigated the roles of HOX antisense intergenic RNA (HOTAIR) during the proliferation and invasion of osteosarcoma. According with our results, HOTAIR was commonly overexpressed in osteosarcoma, which significantly correlated with advanced tumor stage, highly histological grade and poor prognosis. In vitro and in vivo experiments demonstrated that knockdown of HOTAIR could notably suppress cellular proliferation, inhibit invasion and decrease the secretion of MMP2 and MMP9 in osteosarcoma. Collectively, our results suggested that HOTAIR might be a potent therapeutic target for osteosarcoma.

2003년 여름동안 서울지역에서의 오존의 광화학적 특성에 대한 사례 연구 (Case study of ozone photochemistry in the Seoul metropolitan area during the summer 2003)

  • 손장호
    • 한국환경과학회지
    • /
    • 제14권8호
    • /
    • pp.749-760
    • /
    • 2005
  • This study examines the local ozone photochemistry in the urban air. The photochemical formation and destruction of ozone was modeled using a photochemical box model. For the model prediction of ozone budget, measurements were carried out from an urban monitoring station in Seoul ($37.6^{\circ}N,\;127^{\circ}E$), Korea for intensive sampling time period (Jun. $1\~15$, 2003). Photochemical process is likely to play significant role in higher ozone concentrations during the sampling period. The results of model simulation indicated that photochemical ozone production pathway was the reaction of NO with $HO_2$ while ozone destruction was mainly controlled by a photochemical destruction pathway, a reaction of $H_2O$ with $O(^1D).$ The contribution of NMHCs to formation and destruction of ozone in the urban was significant. This was entirely different from remote marine environment. The rates of net photochemical ozone production ranged from 0.1 to 1.3 ppbv $h^{-1}$ during the study period.

벼 내한성에 관여하는 생태 및 형태적인 특성의 품질간 차이 (Varietal Difference in Ecological and Morphological Characteristics Affecting Drought Tolerance)

  • 최상진;박래경
    • 한국작물학회지
    • /
    • 제25권4호
    • /
    • pp.10-16
    • /
    • 1980
  • 벼의 내한성에 관여하는 생태 및 형태적인 특성을 찾기 위하여 수도과 능도 각 5품종씩을 가지고 파종상자에서 벼를 재배하고 건조처리한 후 다시 관수하여 위주상태에서 생육이 회복되는 정도를 비교하였으며 관련되는 식물체부위의 특성과의 관계를 구한 결과 다음과 같이 요약할 수 있였다. 1. 건조처리후 재생력은 수도가 육도보다 강하였고 수도에서는 인도형품종이 일본형 품종보다 강하였다. 2. 생육단암별 재생력은 생육초기에 가장 높았고 생육이 진전되면서 점점 낮아졌는데 어느 시기에서나 수도가 육종보다 높은 재생력을 나타내었다. 3. 초장과 엽면적의 차이는 건조처리후 재생력에 영향을 미치지 않았다. 4. 뿌리 발달의 특성에 주근의 두께와 뿌리의 총건물중은 수도보다 육도에서 높았으며 이것은 밭재배에서의 수량과 높은 정의 상관이 있었다.

  • PDF

Purification of Caudal-Related Homeodomain Transcription Factor and Its Binding Characterization

  • Jeong, Mi-Suk;Hwang, Eun-Young;Kim, Hyun-Tae;Yoo, Mi-Ae;Jang, Se-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1557-1564
    • /
    • 2009
  • Human CDX2 is known as a caudal-related homeodomain transcription factor that is expressed in the intestinal epithelium and is important in differentiation and maintenance of the intestinal epithelial cells. The caudal-related homeobox proteins bind DNA according to a helix-turn-helix structure, thereby increasing the structural stability of DNA. A cancer-tumor suppressor role for Cdx2 has been shown by a decrease in the level of the expression of Cdx2 in colorectal cancer, but the mechanism of transcriptional regulation has not been examined at the molecular level. We developed a large-scale system for expression of the recombinant, novel CDX2, in Escherichia coli. A highly purified and soluble CDX2 protein was obtained in E. coli strain BL21(DE3)RIL and a hexahistidine fusion system using Ni-NTA affinity column, anion exchange, and gel filtration chromatographies. The identity and secondary structure of the purified CDX2 protein were confirmed by MALDI-TOF MS, Western blot, and a circular dichroism analyses. In addition, we studied the DNA-binding activity of recombinant CDX2 by ELISA experiment and isolated human CDX2-binding proteins derived from rat cells by an immobilized GST-fusion method. Three CDX2-binding proteins were found in the gastric tissue, and those proteins were identified to the homeobox protein Hox-D8, LIM homeobox protein 6, and SMC1L1 protein.

Organ-Specific Expression Profile of Jpk: Seeking for a Possible Diagnostic Marker for the Diabetes Mellitus

  • Lee Eun Young;Park Hyoung Woo;Kim Myoung Hee
    • 대한의생명과학회지
    • /
    • 제10권4호
    • /
    • pp.385-389
    • /
    • 2004
  • A novel gene Jpk, originally isolated as a trans-acting factor associating with the position-specific regulatory element of murine Hox gene has been reported to be expressed differentially in the liver of diabetic animals. Therefore, in an attempt to develop a possible diagnostic marker and/or new therapeutic agent for the Diabetes Mellitus, we analysed the expression pattern of Jpk among organs of normal and diabetic Sprague-Dawley (SD) rats. Total RNAs were isolated from each organs (brain, lung, heart, liver, spleen, kidney, muscle, blood, and testis) of diabetic and normal rats in both normal feeding and after fasting condition. And then RT (reverse transcription) PCR has been performed using Jpk­specific primers. The Jpk gene turned out to be expressed in all organs tested, with some different expression profiles among normal and diabetes, though. Upon fasting, Jpk expressions were reduced in all organs tested except kidney, muscle and brain of normal rat. Whereas in diabetes, Jpk expressions were increased in all organs except heart, muscle and testis when fasted. Compared to the normal rat, the Jpk expression level in blood was remarkably upregulated (about 15-30times) in diabetic rat whether in normal feeding or fasting conditon, suggesting that the Jpk could be a candidate gene for the possible blood diagnostic marker for the Diabetes Mellitus.

  • PDF

Aberrant Expression of HOXA5 and HOXA9 in AML

  • Zhao, Peng;Tan, Li;Ruan, Jian;Wei, Xiao-Ping;Zheng, Yi;Zheng, Li-Xia;Jiang, Wei-Qin;Fang, Wei-Jia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3941-3944
    • /
    • 2015
  • Background: Aberrant expression of HOX gene expression has been observed in cancer. The purpose of this study was to investigate the alteration of HOXA5 and HOXA9 expression and their clinical significance in acute meloid leukemia (AML). Materials and Methods: The expression of HOXA5 and HOXA9 genes of bone marrow samples from 75 newly diagnosed AML patients and 22 healthy controls for comparison were examined by Real-time quantitative PCR (RQ-PCR) assay. Statistical analysis was conducted to evaluate HOXA5 and HOXA9 expression as possible biomarkers for AML. Results: The results showed that the complete remission rate (52.6%) of the patients who highly expressed HOXA5 and HOXA9 was significantly lower than that (88.9%) in patients who lowly express the genes (P=0.015). Spearmann correlation coefficients indicated that the expression levels for HOXA5 and HOXA9 genes were highly interrelated (r=0.657, P<0.001). Meanwhile, we detected significant correlations between HOXA9 expression and age in this limited set of patients (P=0.009). Conclusions: The results suggest a prognostic impact of increased expression of HOXA5 and HOXA9 in AML patients.

A Homeotic Gene, Hoxc8, Regulates the Expression of Proliferating Cell Nuclear Antigen in NIH3T3 Cell

  • ;;김명희
    • 대한의생명과학회지
    • /
    • 제13권3호
    • /
    • pp.239-244
    • /
    • 2007
  • Hoxc8 is one of the homeotic developmental control genes regulating the expression of many downstream target genes, through which animal body pattern is established during embryonic development. In previous proteomics analysis, proliferating cell nuclear antigen (PCNA) which is also known as cyclin, has been implied to be regulated by Hoxc8 in F9 murine embryonic teratocarcinoma cell. When the 5' upstream region of PCNA was analyzed, it turned out to contain 20 Hox core binding sites (ATTA) in about 1.17 kbp (kilo base pairs) region ($-520{\sim}-1690$). In order to test whether this region is responsible for Hoxc8 regulation, the upstream 2.3 kbp fragment of PCNA was amplified through PCR and then cloned into the pGL3 basic vector containing a luciferase gene as a reporter. When the luciferase activity was measured in the presence of effector plasmid (pcDNA : c8) expressing murine Hoxc8, the PCNA promoter driven reporter activity was reduced. To confirm whether this reduction is due to the Hoxc8 protein, the siRNA against Hoxc8 (5'-GUA UCA GAC CUU GGA ACU A-3' and 5'-UAG UUC CAA GGU CUG AUA C-3') was prepared. Interestingly enough, siRNA treatment up regulated the luciferase activity which was down regulated by Hoxc8, indicating that Hoxc8 indeed regulates the expression of PCNA, in particular, down regulation in NIN3T3 cells. These results altogether indicate that Hoxc8 might orchestrate the pattern formation by regulating PCNA which is one of the important proteins involved in several processes such as DNA replication and methylation, chromatin remodeling, cell cycle regulation, differentiation, as well as programmed cell death.

  • PDF