New Animal Phylogeny

새로운 동물계통

  • Kim, Chang-Bae (Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Kim, Won (School of Biological Science, Seoul National University)
  • Published : 2001.10.01

Abstract

Animal phyla in the traditional animal phylogeny were organized into an order of increasing body plan complexity, which was based on the similarities in early embryonic stages. Molecular phylogeny mainly by 18S rRNA data provides recently re-evaluation of the traditional evolutionary scenario. The current molecular-based view of animal relationships strongly suggest the burst of two groups regraded as intermediate grades of body complexity in the traditional concept and displacement of them into higher positions in the tree. The new animal tree provides a framework within new picture of bilaterian ancestor could be drawn, and comparative developmental and genomic data to be interpreted.

전통적인 동물의 계통수는 초기발생 형질들에 기초하여 몸 구조의 복잡성에 따라 동물문들을 단순한 동물에서 복잡한 동물 순으로 점진적으로 배열하는 것인데 현재 활발히 연구되는 분자계통 연구들이 이 경향을 재평가하고 새로운 계통과 의미를 제시하고 있다. 주로 18S rRNA 에 의한 분자계통에 의하면 무체강동물과 의체강동물과 같이 진체강동물로의 전이단계에 위치했던 무리들이 서로 나뉘어진 진체강동물 안에 속하게 된다. 이러한 새로운 분자계통은 좌우대칭동물의 공동조사에 대한 새로운 가정들을 세울 수 있는 뼈대와 비교발생학 및 비교유전체학 정보가 해석될 수 있는 토대를 제공한다.

Keywords

References

  1. J. Mol. Evol. v.47 Limitetion of metazoan 18S rRBA sequence date: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion Abouheif, E. ;R. Zardoya;A. Meyer
  2. Trends Genet. v.15 Animal evolution Adoutte, A. ;G. Balavoine;N. Lartillot;R. de Rosa
  3. Proc. Natl. Acad. Sci. v.97 The new animal phylogeny: reliability and imolications Adoutte, A. ;G. Balavoine;N. Lartillot;O. Lespinet;B. Prud'homme;R. de Rosa
  4. Nature v.387 Evidence for a clade of nematodes, arthropods and other moulting animals Aguinaldo, A. M. ;J. M. Turbeville;L. S. Linford;M. C. Rivera;J. R. Garey;R. A. Raff;J. A. Lake
  5. C. R. Acad. SCI. v.320 The early emergence of platyelminths is contradicted by the agreement between 18S rRNA and Hox genes data Balavoine, G.
  6. Am. Zool. v.38 Are platyhelminthes coelomates without a coelom? An agrument based on the evolution of Hox genes. Balavoine, G.
  7. Saunders Xollege Invertebrate Zoology. Barnes, R. D.
  8. Mol. Phylogent. Evol. v.2 Multiple Hox/HOM-class homeoboxes in Platyhelminthes Bartels, J. L. ;M. T. Murtha;F. H. Ruddle
  9. Curr. Opin. Gene. Dev. v.8 Big trees from little genomes: mitochondrial gene order as a phylogenetic tool Boore, J. L. ;W. M. Brown
  10. Sinauer Invertebrates Brusca. R. C. ;G. J. Brusca
  11. Proc. Natl. Acad. Sci. v.97 Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Cameron, C. B. ;J. R. Garey;B. J. Swalla
  12. Nature v.376 Homeotic genes and the evolution of arthropods and chordates Carroll, S. B.
  13. Malden, MA From DNA to Diversity.Blackwell Science. Carroll. S. B. ;J. K. Grenier;S. D. Weatherbee
  14. Can. J. Zool. v.74 Sponge phylogeny, animal monophyly, and the origin of the nerovus system: 18S rRN evidence Cavalier-Smith;T. ;M. T. E. P. allsopp;E. E. Chao;N. Boury-Esnault;J. Vacelet
  15. Proc. Nati. Acad. Sci. v.95 Evaluating multiple alternative hypotheses for origin of Bilateria: an analysis of 18S rRNA molecular evidence. Collons, A. G.
  16. Genomic Regulatory Systerms. Davidson, E. H.
  17. Nature v.387 The ancestry of segmentation DeRobertis, E. M.
  18. Nature v.399 Hox genes in brachiopods and priapulids and protostome evolution. de Rosa;R. ;J. K. Grenier;T. Andreeva;C. E. Cook;A. Adoutte;M. Akam;S. B. Carroll;G.Balavoine
  19. Syst. Biol v.41 Annelida and Aethropofda are not sister-taxa: a phylogenetic analysis of spiralian metazoan morphology Eernisse, D. J. ;J. S. Albert;F. E. Anderson
  20. Syst. Zool. v.27 Cases in which parsimony or compatibility methods will be positively misleading. Felsenstein, J.
  21. Nature Reviews Genetics v.2 Anciemt origin of the Hox gene cluster. Ferrier, D. E. K. ;P. W. H. Holland
  22. Science v.239 Molecular Phylogeny of the animal kingdom Field, K. G. ;G. J. Olsen;D. J. Lane;S. J. Giovannoni;M. T. Ghiselin;E. C. Raff;N. R. Pace;R. A. Raff
  23. Blackwell Science. Malden, MA Cells, Embryos, and Evolution. Gerhart, J. ;M. Kirschner
  24. Nature v.413 Arthropod phylogeny based on eight molecular loci and morphology. Giribet, G. ;G. D. Edgecombe;W. C. Wheeler
  25. Science v.267 Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Halanych, K. M. ;J. D. Bacheller;A. M. Aguinaldo;S. M. Liva;D. M. Hillis;J. A. Lake
  26. Nature, Suppl v.402 The future of evolutionary developmental biology. Holland, P. W. H.
  27. Korea J. Parasitol v.37 General properties and phylogenetic utilities of nuclear ribosomal DNA and mitocondrial DNA commonly usedin molecular systematics. Hwang, U. W. ;W. Kim
  28. Nature v.413 Mitochondrial protein phylogeny joins myriapods with chelicerates. Hwang, U. W. ;F. Markus;D. Tautz;C. J. Park;W. Kim
  29. McGraw-Hill v.1 TheInvertebrates. Protozoa through Ctenophora Hyman, L. H.
  30. J. Mol. Evol. v.43 Phylogenetic relationships of annelids, molluscs, and arthropods evidenced from molecules and morphology Kim, C. B. ;S. Y. Moon; S. R. Gerder;W. Kim
  31. Proc. Natl. Acad. Sci. v.97 Hox cluster genomics inthe horn shark, Heterodontus francisci. Kim, C. ;C. Amemiya;W. Bailey;K. Kawasaki;J. Mezey;W. Miller;S. Mimishima;N. Shimizu;G. Wagner;F. Ruddle
  32. Mol. Biol. Evol v.16 A New perspective on lower metazoan relationships from 18S rRNA sequences. Kim, J. ;W. Kim; C. W. Cunningham
  33. Proc. Natl. Acad. Sci. v.95 Homeobox genes in the ribboonworm Lineus sanguineus: evolutionary implication. Kmita-Cunisse;M. ;F. Loosli;J. Bierne;W. J. Gehring
  34. Science v.284 Early animal evolution: emerging views from comparative biology and geology. Knoll, A. H. ;S. B. Carrol
  35. Invertebrate Zoology Meglitsch, P. A. ;F. R. Schram
  36. Mol. Cells. v.8 Molecular phylogeny of arthropods and their relatives: polyphyletic origin of arthropodization Min, G. ;S. Kim;W. Kim
  37. Animal Evolution: Interelationships of the Living Phyla. Nielsen, C.
  38. Evolution: Interelationships of the Living Phyla. Ohno, S.
  39. Nature Reviews Genetics v.2 Genomic strategies to identify mammalian regulatory sequences. Pennacchio, L. A. ;E. M. Rubin
  40. BioEssays v.19 Set-aside cells in maximal indirect development: evolutionary and developmental significance. Peterson, K. J. ;R. A. Cameron;E. H. Davidson
  41. Evol. Dev. v.3 Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rRNA gene sequences. Peterson, K. J. ;D. J. Eernisse
  42. Development, Suppl. Can the Cambrian explosion be inferred through molecular phylogeny? Philippe, H. ;A. Chenuil;A. Adoutte
  43. Trends Ecol. Evol. v.15 Rare genomic vhanges as a tool for phylogenetics. Rokas, A. ;P. W. H. Holland
  44. Development, Suppl Gene loss and gail in the evolution of the vertebrates. Ruddle, F. H. ;K. L. Bentley;M. T. Murtha;N. Risch
  45. Science v.283 Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes Ruiz-Trillo, I. ;M. Riutort;D. T. Littlewood;E. A. Herniou;J. Baguna
  46. Science v.282 The taxonomy of developmental control in Caenorhabditis elegans. Ruvkun, G. ;O. Hobert
  47. Science v.179 Generation time and genomic evolution in primates. Sarich, V. M. ;A. C. Wilson
  48. Proc. Natl. Acad. Sci. v.95 Comparative studies on mammalian Hoxc8 early enhancer sequence reveal a baleen whale-specific deletion of a cis-acting element. Shashikant, C. S. ;C. B. Kim;M. A. Borbely; W. C. Wang;F. H. Ruddle
  49. BioEssays v.22 SINE insertion: powerful tools for molecular systematies. Shedlock, A. M. ;N. Okada
  50. Genetics v.135 Simple methods for testing the molecular evolutionary clock hypothesis Tajima, F.
  51. Am. Zool v.25 Comparative ultrastructure and evolution of nemertines. Turbeville, J. M. ;E. E. Ruppert
  52. Mol Biol. Evol. v.9 Phylogenetic position of Phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology. Turbeville, J. M. ;K. G. Field;R. A. Raff
  53. Nature Reviews Geneties v.2 Functional genomics and the study of development, variation and evolution White, K. P.
  54. Mol. Biol. Evol. v.12 18S rRNA data indicate that Aschelmimthes are polyphyletic in origin and consist ogf at least three distinct clades Winnepenninckx, B. ;T. Backeljau;L. Y. Mackey;J. M. Brooks;R. De Wachter;S. Kumar;J. R. Garey