• Title/Summary/Keyword: HIV-1 RNA

Search Result 41, Processing Time 0.029 seconds

Inhibition of HIV-1 Replication in CD4+ Peripheral Blood Lymphocytes by Intracellular Expression of RNA Aptamer (RNA aptamer 발현을 통한 CD4+ peripheral blood lymphocytes에서의 인간 면역결핍 바이러스의 증식 억제)

  • Lee, Seong-Uk
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.235-241
    • /
    • 2003
  • We have previously demonstrated that intracellular expression of an RNA aptamer termed RRE40, which was selected in vitro to bind HIV Rev 10-fold much tighter than wild-type RRE, efficiently protected human CD4+ T cell line, CEM, from HIV-1. In this study, to evaluate the efficacy of the RRE40 RNA in clinical settings, polyclonal CD4+ peripheral blood lymphocytes (PBLs) were transduced with retroviral vectors expressing RRE40 decoy RNA and then challenged with clinical isolates of HIV-1. In contrast to the control cells transduced with vectors expressing control tRNA, intracellular expression of RRE40 RNA more effectively inhibited HIV-1 replication in CD4+ PBLs. However, transient and diminished inhibition, rather than complete inhibition, of HIV-1 replication in PBLs expressing RRE40 decoys have been observed. These results suggest that RRE40 decoy RNA would be useful to inhibit HIV-1 replication in cells. However, development of more efficient gene transfer protocols and/or more effective decoy RNAs would be needed to apply RNA decoy to modulate HIV-1 patient.

Improved Inhibition of Human Immunodeficiency Virus Type 1 Replication by Intracellular Co-overexpression of TAR and RRE Decoys in Tandem Array

  • Lee, Seong-Wook
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.300-305
    • /
    • 2003
  • Intracellular expression of RNA decoys, such as TAR or RRE decoy, has been previously shown to protect immune cells from human immunodeficiency virus type 1 (HIV-1) replication by inhibiting the binding of the HIV-1 regulatory protein to the authentic HIV RNA sequence. However, HIV-1 challenge experiments of primary human T cells, which express the RNA decoy, demonstrated that the cells were only transiently protected, and hence, more improved protocols for HIV-1 inhibition with the RNA decoys need to be developed. In this report, in order to develop a more effective RNA decoy, we analyzed and compared the ability of a series of RNA decoy derivatives in inhibiting HIV-1 replication in CEM cells. Using an improved tRNA cassette to express high levels of RNA decoy transcripts in cells, we found that co-expression of both TAR and RRE decoys, in the form of an aligned sequence in a single transcription cassette, much more potently blocked cells from HIV-1 than the expression of only one kind of RNA decoy. This observation will have an important implication for experiments involving optimization of clinical applications in RNA decoy-based gene therapy against HIV-1.

Investigation of the effect of SRSF9 overexpression on HIV-1 production

  • Ga-Na, Kim;Kyung-Lee, Yu;Hae-In, Kim;Ji Chang, You
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.639-644
    • /
    • 2022
  • Serine-arginine-rich splicing factors (SRSFs) are members of RNA processing proteins in the serine-arginine-rich (SR) family that could regulate the alternative splicing of the human immunodeficiency virus-1 (HIV-1). Whether SRSF9 has any effect on HIV-1 regulation requires elucidation. Here, we report for the first time the effects and mechanisms of SRSF9 on HIV-1 regulation. The overexpression of SRSF9 inhibits viral production and infectivity in both HEK293T and MT-4 cells. Deletion analysis of SRSF9 determined that the RNA regulation motif domain of SRSF9 is important for anti-HIV-1 effects. Furthermore, overexpression of SRSF9 increases multiple spliced forms of viral mRNA, such as Vpr mRNA. These data suggest that SRSF9 overexpression inhibits HIV-1 production by inducing the imbalanced HIV-1 mRNA splicing that could be exploited further for a novel HIV-1 therapeutic molecule.

CD7-Specific Single Chain Antibody Mediated Delivery of siRNA to T Cells Inhibits HIV Replication in a Humanized Mouse Model

  • Ban, Hong-Seok;Kumar, Priti;Kim, Na-Hyun;Choi, Chang-Son;Shankar, Premlata;Lee, Sang-Kyung
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.62-64
    • /
    • 2008
  • A major hurdle to the development of RNA interference as therapy for HIV infection is the delivery of siRNA to T lymphocytes which are difficult cells to transfect even in vitro. We have employed a single chain antibody to the pan T cell surface antigen CD7 was conjugated to an oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2${\gamma}$-/- mice reconstituted with human peripheral blood lymphocytes (Hu-PBL). Using a novel delivery, we first show that scFvCD7-9R efficiently delivered CD4 siRNA into human T cells in vitro. In vivo administration to Hu-PBL mice resulted in reduced levels of surface CD4 expression on T cells. Mice infected with HIV-1 and treated on a weekly basis with scFvCD7-9R-siRNA complexes targeting a combination of viral genes and the host coreceptor molecule CCR5 successfully maintained CD4/CD3 T cell ratios up to 4 weeks after infection in contrast to control mice that displayed a marked reduction in CD4 T cell numbers. p24 antigen levels were undetectable in 3 of the 4 protected mice. scFvCD7-9R/antiviral siRNA treatment also helped maintain CD4 T cell numbers with reduced plasma viral loads in Hu-PBL mice reconstituted with PBMC from donors seropositive for HIV, indicating that this method can contain viral replication even in established HIV infections. Our results show that scFvCD7-9R could be further developed as a potential therapeutic for HIV-1 infection.

  • PDF

Ten years of experience in the prevention of mother-to-child human immunodeficiency virus transmission in a university teaching hospital

  • Park, Jung-Weon;Yang, Tae-Whan;Kim, Yun-Kyung;Choi, Byung-Min;Kim, Hai-Joong;Park, Dae-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • Purpose: Administration of antiretroviral drugs to mothers and infants significantly decreases mother-to-child human immunodeficiency virus (HIV) transmission; cesarean sections and discouraging breastfeeding further decreases this risk. The present study confirmed the HIV status of babies born to mothers infected with HIV and describes the characteristics of babies and mothers who received preventive treatment. Methods: This study retrospectively analyzed medical records of nine infants and their mothers positive for HIV who gave birth at Korea University Ansan Hospital, between June 1, 2003, and May 31, 2013. Maternal parameters, including HIV diagnosis date, CD4+ count, and HIV ribonucleic acid (RNA) copy number, were analyzed. Infant growth and development, HIV RNA copy number, and HIV antigen/antibody test results were analyzed. Results: Eight HIV-positive mothers delivered nine babies; all the infants received antiretroviral therapy. Three (37.5%) and five mothers (62.5%) were administered single- and multidrug therapy, respectively. Intravenous zidovudine was administered to four infants (50%) at birth. Breastfeeding was discouraged for all the infants. All the infants were negative for HIV, although two were lost to follow-up. Third trimester maternal viral copy numbers were less than 1,000 copies/mL with a median CD4+ count of $325{\mu}L$ ($92-729{\mu}L$). Among the nine infants, two were preterm (22.2%) and three had low birth weights (33.3%). Conclusion: This study concludes that prophylactic antiretroviral therapy, scheduled cesarean section, and prohibition of breastfeeding considerably decrease mother-to-child HIV transmission. Because the number of infants infected via mother-to-child transmission may be increasing, studies in additional regions using more variables are necessary.

Investigation of functional roles of transcription termination factor-1 (TTF-I) in HIV-1 replication

  • Park, Seong-Hyun;Yu, Kyung-Lee;Jung, Yu-Mi;Lee, Seong-Deok;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.338-343
    • /
    • 2018
  • Transcription termination factor-1 (TTF-I) is an RNA polymerase 1-mediated transcription terminator and consisting of a C-terminal DNA-binding domain, central domain, and N-terminal regulatory domain. This protein binds to a so-called 'Sal box' composed of an 11-base pair motif. The interaction of TTF-I with the 'Sal box' is important for many cellular events, including efficient termination of RNA polymerase-1 activity involved in pre-rRNA synthesis and formation of a chromatin loop. To further understand the role of TTF-I in human immunodeficiency virus (HIV)-I virus production, we generated various TTF-I mutant forms. Through a series of studies of the over-expression of TTF-I and its derivatives along with co-transfection with either proviral DNA or HIV-I long terminal repeat (LTR)-driven reporter vectors, we determined that wild-type TTF-I downregulates HIV-I LTR activity and virus production, while the TTF-I Myb-like domain alone upregulated virus production, suggesting that wild-type TTF-I inhibits virus production and trans-activation of the LTR sequence; the Myb-like domain of TTF-I increased virus production and trans-activated LTR activity.

Establishment of Plasma Working Standards for the Performance and Quality Assurance of NAT Screening Tests for HIV, HCV and HBV (HIV, HCV와 HBV 유전자 분석시약의 성능 및 품질관리용 Plasma Working Standards 제조에 관한 연구)

  • Kim, Myung Han;Cho, Youn Jung;Kwon, So-Yong;Cho, Nam Sun
    • The Korean Journal of Blood Transfusion
    • /
    • v.23 no.2
    • /
    • pp.152-161
    • /
    • 2012
  • Background: Since Jan. 2012, for performance evaluation of viral reagents, analysis of domestic samples has been recommended in order to obtain approval from the KFDA when they are first introduced to Korea. This regulation requires the standard domestic materials driven from locally infected samples. We tried manufacturing the plasma working standards of HBV, HCV, and HIV NAT using a mixed titer of viral loads. Methods: Forty three HBV DNA positive plasmas, 25 HCV RNA positive plasmas, and 26 HIV RNA positive plasmas were evaluated according to viral load and genotype. Several plasma units, which had high-titer viral loads and the common viral genotypes in Korea, were selected as the source materials for each viral standard. To adjust the appropriate concentration based on the detectable range of variable viral reagents, the source plasma was diluted to several concentrations, divided into small vials, and analyzed for quantification. Results: The 13 plasma working standards, which had variable viral loads for the mixed titer performance panel of HIV, HCV, and HBV NAT, were produced. Conclusion: These national standard materials were first produced in order to supply the mixed titer performance panel for the viral NAT reagent of the level IV transfusion related high-risk group in Korea.

Studies on the Binding Affinity of Aminoglycoside Antibiotics to the HIV-l Rev Responsive Element for Designing Potential Antiviral Agents

  • Kwon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.109-117
    • /
    • 2006
  • The Rev binding to Rev Responsive Element (RRE) of HIV-1 mRNA plays an important role in the HIV-I viral replication cycle. The disruption of the Rev-RRE interaction has been studied extensively in order to develop a potential antiviral drug. In order to provide the basis for a more promising approach to develop a Rev-RRE binding inhibitor against HIV-I infection, it is necessary to understand the binding modes of the aminoglycoside antibiotics to RRE. In the present study, the binding mode of a modified antibiotic, a neamine conjugated with pyrene and arginine (NCPA), to RRE has been studied by the methods of $T_m$ measurement and spectroscopic analysis of RRE with or without antibiotics. The results confirmed that NCPA competes with Rev in binding to RRE.

Examination of specific binding activity of aptamer RNAs to the HIV-NC by using a cell-based in vivo assay for protein-RNA interaction

  • Jeong, Yu-Young;Kim, Seon-Hee;Jang, Soo-In;You, Ji-Chang
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.511-515
    • /
    • 2008
  • The nucleocapsid (NC) protein of the Human Immunodeficiency Virus-1 plays a key role in viral genomic packaging by specifically recognizing the Psi($\Psi$) RNA sequence within the HIV-1 genome RNA. Recently, a novel cell-based assay was developed to probe the specific interactions in vivo between the NC and $\Psi$-RNA using E.coli cells (J. Virol. 81: 6151-55, 2007). In order to examine the extendibility of this cell-based assay to RNAs other than $\Psi$-RNA, this study tested the RNA aptamers isolated in vitro using the SELEX method, but whose specific binding ability to NC in a living cellular environment has not been established. The results demonstrate for the first time that each of those aptamer RNAs can bind specifically to NC in a NC zinc finger motif dependent manner within the cell. This confirms that the cell-based assay developed for NC-$\Psi$interaction can be further extended and applied to NC-binding RNAs other than $\Psi$-RNA.