Studies on the Binding Affinity of Aminoglycoside Antibiotics to the HIV-l Rev Responsive Element for Designing Potential Antiviral Agents

  • Published : 2006.01.01

Abstract

The Rev binding to Rev Responsive Element (RRE) of HIV-1 mRNA plays an important role in the HIV-I viral replication cycle. The disruption of the Rev-RRE interaction has been studied extensively in order to develop a potential antiviral drug. In order to provide the basis for a more promising approach to develop a Rev-RRE binding inhibitor against HIV-I infection, it is necessary to understand the binding modes of the aminoglycoside antibiotics to RRE. In the present study, the binding mode of a modified antibiotic, a neamine conjugated with pyrene and arginine (NCPA), to RRE has been studied by the methods of $T_m$ measurement and spectroscopic analysis of RRE with or without antibiotics. The results confirmed that NCPA competes with Rev in binding to RRE.

Keywords

References

  1. Barre-Sinoussi, F., J. C. Chermann, F. Rey, M. T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Vezinet- Brun, C. Rouzioux, W. Rozenbaum, and L. Montagnier. 1983. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868-871 https://doi.org/10.1126/science.6189183
  2. Battiste, J. L., H. Mao, S. Rao, R. Tan, D. R. Muhandiram, L. E. Kay, A. D. Frankel, and J. R. Williamson. 1996. ${\alpha}$ Helix-RNA major groove recognition in an HIV-1 Rev peptide-RRE RNA complex. Science 273: 1547-1551 https://doi.org/10.1126/science.273.5281.1547
  3. Battiste, J. L., R. Tan, A. D. Frankel, and J. R. Williamson. 1994. Binding of an HIV Rev peptide to Rev responsive element RNA induces formation of purine-purine base pairs. Biochemistry 33: 2741-2747 https://doi.org/10.1021/bi00176a001
  4. Calnan, B. J., B. Tidor, S. Biancalana, D. Hudson, and A. D. Frankel. 1991. Arginine-mediated RNA recognition: The arginine fork. Science 252: 1167-1171 https://doi.org/10.1126/science.252.5009.1167
  5. Cho, B.-G., C.-H. Kim, B. K. Lee, and S.-H. Cho. 2005. Comparison of antibiotics resistance of blood culture strains and saprophytic isolates in the presence of biofilms, formed by the intercellular adhesion (ica) gene cluster in Staphylococcus epidermidis. J. Microbiol. Biotechnol. 15: 728-733
  6. Cochrane, A. W., C. H. Chen, and C. A. Rosen. 1990. Specific interaction of the human immunodeficiency virus Rev protein with a structured region in the env mRNA. Proc. Natl. Acad. Sci. USA 87: 1198-1202
  7. Emerman, M., R. Vazeux, and K. Peden. 1989. The rev gene product of the human immunodeficiency virus affects envelope specific RNA localization. Cell 57: 1155-1165 https://doi.org/10.1016/0092-8674(89)90053-6
  8. Felber, B. K., M. Hadzopouloucladaras, C. Cladaras, T. Copeland, and G. N. Pavlakis. 1989. Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc. Natl. Acad. Sci. USA 86: 1495-1499
  9. Greenberg, W. A., E. S. Priestley, P. S. Sears, P. B. Alper, C. Rosenbohm, M. Hendrix, S.-C. Hung, and C.-H. Wong. 1999. Design and synthesis of new aminoglycoside antibiotics containing neamine as an optimal core structure: Correlation of antibiotic activity with in vitro inhibition of translation. J. Am. Chem. Soc. 121: 6527-6541 https://doi.org/10.1021/ja9910356
  10. Hamasaki, K. and A. Ueno. 2001. Aminoglycoside antibiotics, neamine and its derivatives as potent inhibitors for RNA-protein interactions derived from HIV-1 activators. Bioorg. Med. Chem. Lett. 11: 591-594 https://doi.org/10.1016/S0960-894X(01)00005-1
  11. Hendrix, M., S. Priestly, G. F. Joyce, and C. H. Wong. 1997. Direct observation of aminoglycoside-RNA interactions by surface plasmon resonance. J. Am. Chem. Soc. 119: 3641- 3648 https://doi.org/10.1021/ja964290o
  12. Hung, L.-W., E. L. Holbrook, and S. R. Holbrook. 2000. The crystal structure of the Rev binding element of HIV-1 reveals novel base pairing and conformational variability. Proc. Natl. Acad. Sci. USA 97: 5107-5112
  13. Icacmpo, S. and A. Cochrane. 1996. Human immunodeficiency virus type 1 Rev function requires continued synthesis of its target mRNA. J. Virol. 70: 8332-8339
  14. Ippolito, J. A. and T. A. Steitz. 2000. The structure of the HIV-1 RRE high affinity Rev binding site at 1.6 ${\AA}$ resolution. J. Mol. Biol. 295: 711-717 https://doi.org/10.1006/jmbi.1999.3405
  15. Kharel, M., B. Subba, H. C. Lee, K. Liou, J. S. Woo, D. H. Kim, Y.-H. Moon, and J. K. Sohng. 2003. Identification of 2- deoxy-scyllo-inosose synthase in aminoglycoside producer Streptomyces. J. Microbiol. Biotechnol. 13: 828-831
  16. Kirk, S. R., N. W. Leudtke, and Y. Tor. 2000. Neomycin-acridine conjugate: A potential inhibitor of Rev-RRE binding. J. Am. Chem. Soc. 122: 980-981 https://doi.org/10.1021/ja993387i
  17. Lacourciere, K. A., J. T. Stivers, and P. Marino. 2000. Mechanism of neomycin and Rev peptide binding to Rev responsive element of HIV-1 as determined by fluorescence and NMR spectroscopy. Biochemistry 39: 5630-5641 https://doi.org/10.1021/bi992932p
  18. Lapidot, A., V. Vijayabaskar, A. Litovchick, J. Yu, and T. L. James. 2004. Structure-activity relationships of aminoglycoside-arginine conjugates that bind HIV-1 RNAs as determined by fluorescence and NMR spectroscopy. FEBS Lett. 577: 415- 421 https://doi.org/10.1016/j.febslet.2004.10.038
  19. Luedtke, N. W., Q. Liu, and Y. Tor. 2003. RNA-ligand interactions: Affinity and specificity of aminoglycoside dimers and acridine conjugates to the HIV-1 Rev response element. Biochemistry 42: 11391-11403 https://doi.org/10.1021/bi034766y
  20. Lynch, S. R., R. L. Gonzalez, and J. D. Puglisi. 2003. Comparison of X-ray crystal structure of the 30S subunit-antibiotic complex with NMR structure of decoding site oligonucleotide-paromomycin complex. Structure (Camb.) 11: 43-53 https://doi.org/10.1016/S0969-2126(02)00934-6
  21. Malim, M. H., J. Hauber, S.-Y. Le, J. V. Maizel, and B. R. Cullen. 1989. The HIV-1 trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338: 254-257 https://doi.org/10.1038/338254a0
  22. Malim, M. H., L. S. Tiley, D. F. McCarn, J. R. Rusche, J. Hauber, and B. R. Cullen. 1990. HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 60: 675-683 https://doi.org/10.1016/0092-8674(90)90670-A
  23. Mikkelsen1, N. E., K. Johansson, A. Virtanen, and L. A. Kirsebom. 2001. Aminoglycoside binding displaces a divalent metal ion in a tRNA-neomycin B complex. Nat. Struct. Biol. 8: 510-514 https://doi.org/10.1038/88569
  24. Milligan, J. F., D. R. Groebe, G. W. Witherell, and O. C. Uhlenbeck. 1987. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15: 8793-8798
  25. Milligan, J. F. and O. C. Uhlenbeck. 1989. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180: 51-62 https://doi.org/10.1016/0076-6879(89)80091-6
  26. Olsen, H. S., P. Nelbock, A. W. Cochrane, and C. A. Rosen. 1990. Secondary structure is the major determinant for interaction of HIV rev protein with RNA. Science 247: 845- 848 https://doi.org/10.1126/science.2406903
  27. Peterson, R. D., D. P. Bartel, J. W. Szostak, S. J. Horvath, and J. Feigon. 1994. $^{1}H$ NMR studies of the high-affinity Rev binding site of the Rev Responsive Element of HIV-1 mRNA: Base pairing in the core binding element. Biochemistry 33: 5357-5366 https://doi.org/10.1021/bi00184a001
  28. Peterson, R. D. and J. Feigon. 1996. Structural change in Rev Responsive Element RNA of HIV-1 on binding Rev peptide. J. Mol. Biol. 264: 863-877 https://doi.org/10.1006/jmbi.1996.0683
  29. Plateau, P. and M. Gueron. 1982. Exchangeable proton NMR without base-line distortion, using new strong-pulse sequences. J. Am. Chem. Soc. 104: 7301-7311
  30. Puglish, J. D. and I. Jr. Tinoco. 1989. Absorbance melting curves of RNA. Methods Enzymol. 180: 304-325 https://doi.org/10.1016/0076-6879(89)80108-9
  31. Rhee, K. Y. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus Pyricularia oryzae. J. Microbiol. Biotechnol. 13: 984-988
  32. Tok, J., L. J. Dunn, and R. C. Des Jean. 2001. Binding of dimeric aminoglycosides to the HIV-1 Rev responsive element (RRE) RNA construct. Bioog. Med. Chem. Lett. 11: 1127-1131 https://doi.org/10.1016/S0960-894X(01)00149-4
  33. Tuerk, C. and S. MacDougal-Waugh. 1993. In vitro evolution of functional nucleic acids: High-affinity RNA ligands of HIV-1 proteins. Gene 137: 33-39 https://doi.org/10.1016/0378-1119(93)90248-2
  34. Turner, B. G. and M. F. Summers. 1998. Structural biology of HIV. J. Mol. Biol. 285: 1-32 and references therein https://doi.org/10.1006/jmbi.1998.2354
  35. Van Ryk, D. I. and S. Venkatesan. 1999. Real-time kinetics of HIV-1 Rev-rev responsive element interactions. Definition of minimal binding sites on RNA and protein and stoichiometric analysis. J. Biol. Chem. 274: 17452-17463 https://doi.org/10.1074/jbc.274.25.17452
  36. Wei, X., S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini, P. Deutsch, J. D. Lifson, S. Bonhoeffer, M. A. Nowak, B. H. Hahn, M. S. Saag, and G. M. Shaw. 1995. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373: 117-122 https://doi.org/10.1038/373117a0
  37. Yoshizawa, S., D. Fourmy, and J. D. Puglisi. 1998. Structural origins of gentamycin antibiotic action. EMBO J. 17: 6437- 6448 https://doi.org/10.1093/emboj/17.22.6437
  38. Zapp, M. L. and M. R. Green. 1989. Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 342: 714-716 https://doi.org/10.1038/342714a0
  39. Zhao, X.-Q., K.-R. Kim, L. W. Sang, S.-H. Kang, Y.-Y. Yang, and J.-W. Suh. 2005. Genetic organization of a 50-kb gene cluster isolated from streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase. J. Microbiol. Biotechnol. 15: 346-353
  40. Zheng, M., H. Huang, G. K. Smith, X. Yang, and X. Gao. 1996. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study. J. Mol. Biol. 264: 323-336 https://doi.org/10.1006/jmbi.1996.0643