• Title/Summary/Keyword: H Beams

Search Result 473, Processing Time 0.024 seconds

A Study On Lateral Buckling Of H-Section Steel Beams (H형(形) 강(鋼) 보의 횡좌굴(橫挫屈)에 관(關)한 연구(硏究))

  • Kim, Seok-Jung
    • Journal of Industrial Technology
    • /
    • v.4
    • /
    • pp.29-35
    • /
    • 1984
  • Buckling is a significant behavior to be considered whenever we design steel structures. In the case of H-shape beams, the lateral buckling occured by bending moment must be considered. Because of the lateral buckling of H-shape beams, the bending strength of the beams are determined by the lateral buckling stress instead of the allowable bending stress. Lateral buckling stress equation, consisting of two terms, i. e. ${\sigma}_{cr}({\nu},{\omega})={\sqrt{[{\sigma}_{cr}({\nu})]^2+[{\sigma}_{cr}({\omega})]^2}}$ has been using, but for the practical purpose of use the following equations are using two, i. e. ${\sigma}_{cr}({\nu})={\frac{0.65E}{{\ell}_h/A_f}}$, ${\sigma}_{cr}({\omega})={\frac{{\pi}^2E}{({\ell}_b/i_b)^2}}$. When we use the above equations, the results are different according to the shape of beam section, and they a re rather complex. In this study lateral buckling stress equation is derived, and the proposed formula$({\sigma}_{cr}(t))$ is compared with above mentioned two basic and practical equations. To verify the proposed formula experimentaly, 16H-shape beams which have different slender ratios arc tested by applying pure bending momet. Through the experiments the buckling behavior of H-shape beams is clarified, and the results shows that the proposed formula$({\sigma}_{cr}(t))$ is accurate enough for practical purpose.

  • PDF

An Experimental Study on Reinforcing Efficiency of H-Shaped Steel Beams with a Rectangular Web Opening (유공 H 형강보의 보강효율에 관한 실험적 연구)

  • Kim, Jin-Mu;Cho, Chul-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.171-178
    • /
    • 1999
  • Despite of decrease in shear and moment strengths, most steel structural designers use web openings in beams because of economical benefit and requirement. The purpose of this study is to suggest the method of reinforcement of H-shape steel beams with a rectangular web opening. If shear predominates over bending, it is necessary to consider all possible combinations of shear force and bending moment acting at the opening. In this paper, the ultimate strength and behavior of perforated beams have been investigated according to parameters (ratio of M/V, opening width within opening height ratio D/h, various reinforcing types A/B/C/D/M/N/W). The results of this study are as follows ; 1. Deformation of H-shape steel beams with a rectangular web opening was greatly affected by not only bending but also shear. 2. SB1-2/3 series have little difference in the reinforced efficiency, but SB1-2E/3E series have difference in the reinforced efficiency according to the reinforcement type. 3. Efficiency of SB1-2E/3E series is determined by reinforcing types, which RB1-2E-B/M/C and RB1-3E-M/D/C specimens have good efficient. Reinforcing type of perforated beams chooses efficient method according to ratio of M/V and D/h.

  • PDF

The Effects on Horizontal Web Reinforcements for Reinforced High Strength Concrete Deep Beams (춤이 깊은 고강도 철근콘크리트 보의 수평전단철근 효과에 관한 연구)

  • 신성우;성열영;안종문;이광수;박무용;김형준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.337-344
    • /
    • 1996
  • Reinforced concrete deep beams with conpressive strengths in the range of 500kg/$\textrm{cm}^3$~750kg/$\textrm{cm}^3$ were tested under two-point loding. All the beams were singly reinforced with main steel percent $\rho$=1.29% and with nominal percentage of vertical shear reinflrcements $\rho_v$=0.26%. According to shear-span to depth ratio a/d. The beams were tested for four horizontal shear reinforcement ratio $\rho_h$, ranging from$\rho_h$=0.0 to $\rho_h$=0.53. The results indicate that the horizontal shear reinforcements of beams have an effect on failure load and on ductile behavior of deep beams. The test results are compared with predictions based on the current ACI Building Code. The computated reports in the paper will have designers assured for design of high strength concrete deep beam. Though ACI Code is relatively conservative and tend to non-economical, ACI Code has the merit that is easy to use.

  • PDF

Study of Structural Stability for H-section Beams Made of Fire Resistant Steels (FR 490) at High Temperatures by Analytical Method (건축용 내화강재(FR 490) 적용 H형강 보부재의 고온내력 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.52-57
    • /
    • 2014
  • When structural elements of steel framed structures are exposed to fire situations, the structural stability begins to decrease due to dislocation of substantial. The increase of the beam length causes an additional stress and deflection. These can be serious factors to cause a severe failure of structures. To improve the fire resistance of beams, prevention of the heat from a fire by coating with fire protection material is essential for beams. The FR 490 was developed to enhance fire resistance compared with SM 490 steel. However, the fire resistance of FR 490 H-beams has not been evaluated by analysis method since it was developed. In this paper, materials properties in high temperature and a heat transfer and thermal stress theory were used in the evaluation of the fire resistance of FR490 H-beams. The fire resistance of FR490 steel beams was compared with that of SM490 beams. The comparison verified that the structural stability of FR490 beams at high temperature was superior to that of SM490 beams.

An Experimental Study on Reinforcing Effectiveness of H-Shaped Steel Beams with Rectangular Web Openings (다공 H 형강보의 보강효과에 관한 실험적 연구)

  • Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.213-222
    • /
    • 1999
  • On condition that opening located at high shear strength position in H-shaped steel beams with web opening, beams are structurally to be frailed so necessity and efficiency of vertical reinforcement to add horizontal reinforcement already published ahead study. Up to the present study of web opening beams, limited one opening which located in comparatively small shear strength position. But frequently opening area is enlargement by necessity, so width of opening is larger by limit of depth or increasing number of opening. This study carry out experiment to make efficient reinforcing method about strength and deformation of steel beams with web openings. Parameters of this study are openings location, ratio of opening width within opening height and various reinforcing types.

  • PDF

Dynamic Response Analysis of Composite H-Type Cross-Section Beams to Random Loads (랜덤하중이 가해진 복합재료 H-형 보의 동적 응답 해석)

  • Kim, Sung-Kyun;Song, Pong-Gun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.130-135
    • /
    • 2011
  • A study of the bending-extension-transverse shear coupled random response of the composite beams with thin-walled open sections subjected to various types of concentrated and distributed random excitations is dealt with in this paper. First of all, equations of motion of thin-walled composite H-type cross-section beams incorporating a number of nonclassical effects of transverse shear and primary and secondary warping, and anisotropy of constituent materials are derived. On the basis of derived equations of motion, analytical expressions for the displacement response of the composite beams are derived by using normal mode method combined with frequency response function method.

  • PDF

Shear behavior of RC beams externally strengthened and anchored with CFRP composites

  • Al-Rousan, Rajai Z.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.447-456
    • /
    • 2017
  • The primary objective of this paper is to study the effectiveness of anchorage on the performance of shear deficient beams externally strengthened with CFRP composites. The overall behavior of the tested beams loaded up to failure, the onset of the cracking, and crack development with increased load and ductility were described. The use of CFRP composites is an effective technique to enhance the shear capacity of RC beams by using CFRP strips anchored into the tension side and from the top by 15-34% based on the investigated variables. Bonded anchorage of CFRP strips with width of 0.1h-0.3h to the beam resulted in a decrease in average interface bond stress and an increase in the effective strain of the FRP sheet at failure, which resulted in a higher shear capacity as compared with that of the U-wrapped beams without anchorage as well as delay or mitigate the sheet debonding from the concrete surface.

Finite Element Analysis on the Stress and Displacement Behavior Safeties of Dome Roof Structures for a LNG Storage Tank (LNG 저장탱크 돔루프 구조물의 응력 및 변형거동 안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.7-12
    • /
    • 2010
  • This paper presents FE analysis on the stress and displacement behavior safeties of dome roof structures for a LNG outer tank, which is constructed by sets of H beams and reinforced concrete. The excitation force of 0.2g is applied at the center of the bottom concrete structure of an outer tank. The computed FEM results indicated that the maximum von Mises stress was shown at the edge of dome roof structure and the maximum displacement was produced at the center of dome roof. The results showed that the concentrated stress and displacement were steadily increased for an increased number of H beams. This means that the number of H beams does not critically affect to the safety of the dome roof structure because the stiffness of a reinforced concrete structure is much higher than that of H beams. Thus, the number of H beams may be restricted under 60 due to a dead weight of H beams for 0.2g excitation force.

Study on Fire Resistance of Beams filled with Concrete at Web Through Temperature Analysis and Load-bearing Fire Tests (온도해석과 재하가열시험에 의한 콘크리트 충전 보부재의 내화성능평가에 관한 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.82-88
    • /
    • 2010
  • Major structural elements such as columns and beams are designed to withstand the vertical and horizontal loads. Futhermore, when the structural elements were engulfed with fire the structural stability should be stand without failure. The beams have been developed in aspects of structural stability but an evaluation of fire performance was not done. So the data of fire resistance performance of beams filled with concrete at web on H-section is not known. The purpose of this paper is to analyse the correlation between temperature analysis and fire test with the beams and to show the fire resistance performance with two methods.

BDM Rolling of Middle Sized H-beams from a Bloom (블룸을 이용한 중형 H 형강 BDM 압연 공정 연구)

  • Kim, J.M.;Kim, K.W.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • H-beams are generally produced by hot rolling composed of a Break Down Mill (BDM) and a Finishing Mill (FM). The goal of the current study was to develop BDM rolling of H300x300 beams from blooms slit from slabs. In order to manufacture H300x300 beams, the caliber design and the pass schedule of BDM rolling were proposed for a bloom instead of a beam blank. The proposed BDM caliber design and pass schedule were tested using FE-simulation and pilot tests. For the major shape dimensions, such as flange width, web height, web thickness, as well as BDM rolling loads, a comparative analysis between the FE-simulation and the pilot rolling tests was conducted. The results of FEM analysis and pilot rolling tests showed good consistency. Moreover, BDM rolling loads were predicted to be in the range of allowable rolling loads. It was concluded that the designed BDM rolling is suitable for implementation within current manufacturing capacity.