• Title/Summary/Keyword: Growth of ice crystal

Search Result 14, Processing Time 0.025 seconds

Growth of Ice Crystal with Concentration of Surfactant in Water Solution (계면활성제 농도가 빙결정의 입자크기에 미치는 영향)

  • ;稻葉英男
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.240-247
    • /
    • 2002
  • Recently, a thermal energy storage system has been developed actively fur the purpose of saving energy and reducing the peak electrical demand. Especially, ice slurry is a promising working fluid for low temperature energy storage systems. A flow of ice crystals has a large cooling capacity as a result of the involvement of latent heat. However, there are still problems related to the recrystallization of ice crystals for realizing long term storage and long distance transportation. To find improvements fur this, a method for the creation of ice crystals resistant to recrystallization has been proposed and researched by the use of an antifreeze protein (AFP) solution etc. In the present study, it has been investigated the growth of ice crystal in several kinds of water solution added non-ionic surfactant. The results shows that size of ice crystal was smaller with increasing in added surfactant. And ice crystal was not increased with added surfactant.

Growth kinetics and pattern formation of ice dendrites at small subcoolings (작은 과냉각 상태에서 ice dendrite의 결정 성장 특성)

  • 구기갑
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.197-208
    • /
    • 1995
  • An experiment study of the dendrite growth of ice crystals growing in quiescent pure subcooled water was made at small subcoolings of 0.035 K < ${\Delta}T$ < 1.000 K. It was observed that the growth kinetics and morphology are functions of not only subcooling but also thermal convection. When the subcooling is less than 0.35K, it was found that effect of thermal convection on growth kinetics of ice dendrites becomes important. Quantitiative measurements of growth velocity, $V_{G}$, and tip radii of the edge and basal planes, $R_{1}$ and $R_{2}$, were made simultaneously as a function of subcooling.

  • PDF

Effect of Frozen Storage Temperature on the Quality of Premium Ice Cream

  • Park, Sung Hee;Jo, Yeon-Ji;Chun, Ji-Yeon;Hong, Geun-Pyo;Davaatseren, Munkhtugs;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.793-799
    • /
    • 2015
  • The market sales of premium ice cream have paralleled the growth in consumer desire for rich flavor and taste. Storage temperature is a major consideration in preserving the quality attributes of premium ice cream products for both the manufacturer and retailers during prolonged storage. We investigated the effect of storage temperature (−18℃, −30℃, −50℃, and −70℃) and storage times, up to 52 wk, on the quality attributes of premium ice cream. Quality attributes tested included ice crystal size, air cell size, melting resistance, and color. Ice crystal size increased from 40.3 µm to 100.1 µm after 52 wk of storage at −18℃. When ice cream samples were stored at −50℃ or −70℃, ice crystal size slightly increased from 40.3 µm to 57-58 µm. Initial air cell size increased from 37.1 µm to 87.7 µm after storage at −18℃ for 52 wk. However, for storage temperatures of −50℃ and −70℃, air cell size increased only slightly from 37.1 µm to 46-47 µm. Low storage temperature (−50℃ and −70℃) resulted in better melt resistance and minimized color changes in comparison to high temperature storage (−18℃ and −30℃). In our study, quality changes in premium ice cream were gradually minimized according to decrease in storage temperature up to−50℃. No significant beneficial effect of −70℃ storage was found in quality attributes. In the scope of our experiment, we recommend a storage temperature of −50℃ to preserve the quality attributes of premium ice cream.

Basic Studies in Improvement of Freeze Concentration -(II) The Growth Rate and the Variety in Diameters of Ice Crystals- (동결농축(凍結濃縮)의 개선(改善)을 위한 기초적연구(基礎的硏究) -II. 빙결정(氷結晶)의 성장속도(成長速度)와 입경분포(粒徑分布)-)

  • Kong, Jai-Yul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.4
    • /
    • pp.359-364
    • /
    • 1985
  • Being used the three kinds of aqueous solution of tobacco extracts as a new experimental material, experiment and theoretical analysis are performed. Measurements are made with a apparatus designed and constructed by the author.The average diameter of the ice crystals is 0.04-0.1cm between 0.2 and $0.6^{\circ}C$ of the subcooling temperature of the solution. The growth rate of ice crystals in direction of axies A, $V_a$ is in proportion to the subcooling temperature, viz; $v_a=0.058{\Delta}t_b,\;where\;{\Delta}t_b<0.1^{\circ}C$ The growth rate of ice crystal have to be considered not only the mass diffusion and the heat transfer of rate controlling but also the process in ice crystallization. The growth rate of ice crystal is found to be independent on the concentration of the solution and a diameter of ice crystal.

  • PDF

Recent Advances in Structural Studies of Antifreeze Proteins (구조 생물학을 이용한 Antifreeze protein의 최근 연구동향)

  • Lee, Jun-Hyuck;Lee, Sung-Gu;Kim, Hak-Jun
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2011
  • Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

Evaluation of Thermal Hysteresis Activity of Ice-binding Proteins Using Ice-etching and Molecular Docking

  • Nugroho, Wahyu Sri Kunto;Wu, Sangwook;Kim, Hak Jun
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.2
    • /
    • pp.106-112
    • /
    • 2018
  • Ice-binding proteins have an affinity for ice. They create a gap between the melting and freezing points by inhibiting the growth of ice, known as thermal hysteresis (TH). Interestingly, moderately active LeIBP and hyperactive FfIBP are almost identical in primary and tertiary structures, but differ in TH activity. The TH of FfIBP is tenfold higher than that of LeIBP, due to a subtle difference in their ice-binding motifs. To further evaluate the difference in TH, the interactions were investigated by ice-etching and molecular docking. Ice-etching showed that FfIBP binds to the primary and secondary prism, pyramidal, and basal planes; previously, LeIBP was found to bind to the basal and primary prism planes. Docking analysis using shape complementarity (Sc) showed that the hyperactive FfIBP had higher Sc values for all four ice planes than LeIBP, which is comparable with TH. Docking can be used to describe the hyperactivity of IBPs.

Freeze Tolerance Enhanced by Antifreeze Protein in Plant

  • Hwang, Cheol-Ho;Park, Hyun-Woo;Min, Sung-Ran;Liu, Jang-Ryol
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.339-343
    • /
    • 2000
  • When plants are exposed to subfreezing temperatures ice crystals are forming within extracelluar space in leaves. The growth of ice crystal is closely related to the degree of freezing injury. It was shown that an antifreeze protein binds to an ice nucleator through hydrogen bonds to prevent growth of ice crystal and also reduces freezing damage. The antifreeze proteins in plants are similar to PR proteins but only the PR proteins induced upon cold acclimation were shown to have dual functions in antifreezing as well as antifungal activities. Three of the genes encoded for CLP, GLP, and TLP were isolated from barley and Kentucky bluegrass based on amino acid sequence revealed after purification and low temperature-inducibility as shown in analysis of the protein. The deduced amino acid of the genes cloned showed a signal for secretion into extracellular space where the antifreezing activity sup-posed to work. The western analysis using the antisera raised against the antifreeze proteins showed a positive correlation between the amount of the protein and the level of freeze tolerance among different cultivars of barely. Besides it was revealed that TLP is responsible for a freeze tolerance induced by a treatment of trinexapac ethyl in Kentucky bluegrass. Analysis of an overwintering wild rice, Oryza rufipogon also showed that an acquisition of freeze tolerance relied on accumulation of the protein similar to CLP. The more direct evidence for the role of CLP in freeze tolerance was made with the analysis of the transgenic tobacco showing extracellular accumulation of CLP and enhanced freeze tolerance measured by amount of ion leakage and rate of photosynthetic electron transport upon freezing. These antifreeze proteins genes will be good candidates for transformation into crops such as lettuce and strawberry to develop into the new crops capable of freeze-storage and such as rose and grape to enhance a freeze tolerance for a safe survival during winter.

  • PDF

Satellite Image Analysis of Low-Level Stratiform Cloud Related with the Heavy Snowfall Events in the Yeongdong Region (영동 대설과 관련된 낮은 층운형 구름의 위성관측)

  • Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Cheol;Han, Sang-Ok
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.577-589
    • /
    • 2015
  • An unusual long-period and heavy snowfall occurred in the Yeongdong region from 6 to 14 February 2014. This event produced snowfall total of 194.8 cm and the recordbreaking 9-day snowfall duration in the 103-year local record at Gangneung. In this study, satellite-derived cloud-top brightness temperatures from the infrared channel in the atmospheric window ($10{\mu}m{\sim}11{\mu}m$) are examined to find out the characteristics of clouds related with this heavy snowfall event. The analysis results reveal that a majority of precipitation is related with the low-level stratiform clouds whose cloud-top brightness temperatures are distributed from -15 to $-20^{\circ}C$ and their standard deviations over the analysis domain (${\sim}1,000km^2$, 37 satellite pixels) are less than $2^{\circ}C$. It is also found that in the above temperature range precipitation intensity tends to increase with colder temperature. When the temperatures are warmer than $-15^{\circ}C$, there is no precipitation or light precipitation. Furthermore this relation is confirmed from the examination of some other heavy snowfall events and light precipitation events which are related with the low-level stratiform clouds. This precipitation-brightness temperature relation may be explained by the combined effect of ice crystal growth processes: the maximum in dendritic ice-crystal growth occurs at about $-15^{\circ}C$ and the activation of ice nuclei begins below temperatures from approximately -7 to $-16^{\circ}C$, depending on the composition of the ice nuclei.

Effect of Freezing Conditions on the Formation of Ice Crystals in Food during Freezing Process (식품의 동결중에 생성되는 빙결정에 미치는 동결조건의 영향)

  • 공재열;김정한;김민용;배승권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.213-218
    • /
    • 1992
  • The reaching time to the freezing point was to be fast in the order of 2% agar gel, 5% agar gel, 20% gelatin gel, pork, respectively. The freezing time and the passing time through the zone of the maximum ice crystal formation had linear relationship with the coolant temperature. The average diameter d$_{p}$ of ice crystal in a soybean protein gel and the moving of freezing front were represented an inverse proportion, and the moving velocity of freezing front was shown as 3.4$\times$10$^{-6}$ $\textrm{cm}^2$/sec from predicted theoretical formula. This value was very close to experimental results. The storage temperature did not give any influences for the growth of ice crystal in inside soybean protein gels during freezing conservation. The relationship between freezing condition and structure of freezing front was as follows : (moving velocity of freezing front) : (mass transfer rate of water at freezing point)$\times$(surface area of freezing front).

  • PDF

Biochemical Adaptation to the Freezing Environment - the Biology of Fish Antifreeze Proteins

  • Li, Zhengjun;Li, n Qingsong;Low Woon-Kai;Miao Megan;Hew Choy L.
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.607-615
    • /
    • 2003
  • Many organisms are known to survive in icy environments. These include both over wintering terrestrial insects and plants as well the marine fish inhabiting high latitudes. The adaptation of these organisms is both a fascinating and important topic in biology. Marine teleosts in particular, can encounter ice-laden seawater that is approximately $1^{\circ}C$ colder than the colligative freezing point of their body fluids. These animals produce a unique group of proteins, the antifreeze proteins (AFPs) or antifreeze glycoproteins (AFGPs) that absorb the ice nuclei and prevent ice crystal growth. Presently, there are at least four different AFP types and one AFGP type that are isolated from a wide variety of fish. Despite their functional similarity, there is no apparent common protein homology or ice-binding motifs among these proteins, except that the surface-surface complementarity between the protein and ice are important for binding. The remarkable diversity of these proteins and their odd phylogenetic distribution would suggest that these proteins might have evolved recently in response to sea level glaciations just 1-2 million years ago in the northern hemisphere and 10-30 million years ago around Antarctica. Winter flounder, Pleuronectes americanus, has been used as a popular model to study the regulation of AFP gene expression. It has a built-in annual cycle of AFP expression controlled negatively by the growth hormone. The signal transduction pathways, transcription factors and promoter elements involved in this process have been studied in our laboratory and these studies will be presented.