DOI QR코드

DOI QR Code

Evaluation of Thermal Hysteresis Activity of Ice-binding Proteins Using Ice-etching and Molecular Docking

  • Received : 2018.01.02
  • Accepted : 2018.02.14
  • Published : 2018.04.20

Abstract

Ice-binding proteins have an affinity for ice. They create a gap between the melting and freezing points by inhibiting the growth of ice, known as thermal hysteresis (TH). Interestingly, moderately active LeIBP and hyperactive FfIBP are almost identical in primary and tertiary structures, but differ in TH activity. The TH of FfIBP is tenfold higher than that of LeIBP, due to a subtle difference in their ice-binding motifs. To further evaluate the difference in TH, the interactions were investigated by ice-etching and molecular docking. Ice-etching showed that FfIBP binds to the primary and secondary prism, pyramidal, and basal planes; previously, LeIBP was found to bind to the basal and primary prism planes. Docking analysis using shape complementarity (Sc) showed that the hyperactive FfIBP had higher Sc values for all four ice planes than LeIBP, which is comparable with TH. Docking can be used to describe the hyperactivity of IBPs.

Keywords

References

  1. Kim, H. J.; Lee, J. H.; Hur, Y. B.; Lee, C. W.; Park, S.- H.; Koo, B.-W. Mar. Drugs. 2017, 27.
  2. Davies, P. L. Trends Biochem. Sci. 2014, 548.
  3. Bar Dolev, M.; Braslavsky, I.; Davies, P. L. Annu. Rev. Biochem. 2016, 85, 515. https://doi.org/10.1146/annurev-biochem-060815-014546
  4. Raymond, J. A. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, E198. https://doi.org/10.1073/pnas.1106288108
  5. Raymond, J. A.; Kim, H. J. PLoS One 2012, 7, e35968. https://doi.org/10.1371/journal.pone.0035968
  6. Raymond, J. A.; Fritsen, C.; Shen, K. FEMS Microbiol. Ecol. 2007, 61, 214. https://doi.org/10.1111/j.1574-6941.2007.00345.x
  7. Kristiansen, E.; Zachariassen, K. E. Cryobiology 2005, 51, 262. https://doi.org/10.1016/j.cryobiol.2005.07.007
  8. Fletcher, G. L.; Hew, C. L.; Davies, P. L. Annu. Rev. Physiol. 2001, 63, 359. https://doi.org/10.1146/annurev.physiol.63.1.359
  9. Lee, S. G.; Lee, J. H.; Kang, S.; Kim, H. J. Mar. Proteins Pept. Biol. Act. Appl. 2013, 667.
  10. Graham, L. A.; Liou, Y. C.; Walker, V. K.; Davies, P. L. Nature 1997, 388, 727. https://doi.org/10.1038/41908
  11. Graether, S. P.; Kuiper, M. J.; Gagne, S. M.; Walker, V. K.; Jia, Z.; Sykes, B. D.; Davies, P. L. Nature 2000, 406, 325. https://doi.org/10.1038/35018610
  12. Hanada, Y.; Kondo, H.; Garnham, C. P.; Togashi, S.; Nishimiya, Y.; Hoshino, T.; Miura, A.; Davies, P. L.; Tsuda, S. In Ice- Binding Protein Conference; Kingston, ON, Canada, 2011.
  13. Raymond, J. A.; de Vries, A. L. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 2589. https://doi.org/10.1073/pnas.74.6.2589
  14. Knight, C. A.; Cheng, C. C.; de Vries, A. L. Biophys. J. 1991, 59, 409. https://doi.org/10.1016/S0006-3495(91)82234-2
  15. Drori, R.; Celik, Y.; Davies, P. L.; Braslavsky, I. J. R. Soc. Interface 2014, 11, 20140526. https://doi.org/10.1098/rsif.2014.0526
  16. Pertaya, N.; Marshall, C. B.; Celik, Y.; Davies, P. L.; Braslavsky, I. Biophys. J. 2008, 95, 333. https://doi.org/10.1529/biophysj.107.125328
  17. Park, K. S.; Do, H.; Lee, J. H.; Park, S. I.; Kim, E. J.; Kim, S. J.; Kang, S. H.; Kim, H. J. Cryobiology 2012, 64, 286. https://doi.org/10.1016/j.cryobiol.2012.02.014
  18. Lee, J. H.; Park, A. K.; Do, H.; Park, K. S.; Moh, S. H.; Chi, Y. M.; Kim, H. J. J. Biol. Chem. 2012, 287, 11460. https://doi.org/10.1074/jbc.M111.331835
  19. Do, H.; Kim, S. J.; Kim, H. J.; Lee, J. H. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 1061. https://doi.org/10.1107/S1399004714000996
  20. Nishimiya, Y.; Ohgiya, S.; Tsuda, S. J. Biol. Chem. 2003, 278, 32307. https://doi.org/10.1074/jbc.M304390200
  21. Baardsnes, J.; Kuiper, M. J.; Davies, P. L. J. Biol. Chem. 2003, 278, 38942. https://doi.org/10.1074/jbc.M306776200
  22. Jia, Z.; Davies, P. L. Trends Biochem. Sci. 2002, 27, 101. https://doi.org/10.1016/S0968-0004(01)02028-X
  23. Nutt, D. R.; Smith, J. C. J. Am. Chem. Soc. 2008, 130, 13066. https://doi.org/10.1021/ja8034027
  24. Garnham, C. P.; Campbell, R. L.; Davies, P. L. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 7363. https://doi.org/10.1073/pnas.1100429108
  25. Leinala, E. K.; Davies, P. L.; Jia, Z. Structure 2002, 10, 619. https://doi.org/10.1016/S0969-2126(02)00745-1
  26. Doucet, D.; Tyshenko, M. G.; Kuiper, M. J.; Graether, S. P.; Sykes, B. D.; Daugulis, A. J.; Davies, P. L.; Walker, V. K. Eur. J. Biochem. 2000, 267, 6082. https://doi.org/10.1046/j.1432-1327.2000.01694.x
  27. Graether, S. P.; Slupsky, C. M.; Davies, P. L.; Sykes, B. D. Biophys. J. 2001, 81, 1677. https://doi.org/10.1016/S0006-3495(01)75821-3
  28. Bartels-Rausch, T.; Bergeron, V.; Cartwright, J. H. E.; Escribano, R.; Finney, J. L.; Grothe, H.; Gutierrez, P. J.; Haapala, J.; Kuhs, W. F.; Pettersson, J. B. C. Rev Mod Phys 2012, 84, 885. https://doi.org/10.1103/RevModPhys.84.885
  29. Fortes, A. D.; Wood, I. G.; Grigoriev, D.; Alfredsson, M.; Kipfstuhl, S.; Knight, K. S.; Smith, R. I. J. Chem. Phys. 2004, 120, 11376. https://doi.org/10.1063/1.1765099
  30. Hew, C. L.; Yang, D. S. Eur. J. Biochem. 1992, 203, 33. https://doi.org/10.1111/j.1432-1033.1992.tb19824.x
  31. Garnham, C. P.; Natarajan, A.; Middleton, A. J.; Kuiper, M. J.; Braslavsky, I.; Davies, P. L. Biochemistry 2010, 49, 9063. https://doi.org/10.1021/bi100516e
  32. Howard, E. I.; Blakeley, M. P.; Haertlein, M.; Petit-Haertlein, I.; Mitschler, A.; Fisher, S. J.; Cousido-Siah, A.; Salvay, A. G.; Popov, A.; Muller-Dieckmann, C.; Petrova, T.; Podjarny, A. J. Mol. Recognit. 2011, 24, 724. https://doi.org/10.1002/jmr.1130
  33. Hanada, Y.; Nishimiya, Y.; Miura, A.; Tsuda, S.; Kondo, H. FEBS J. 2014, 281, 3576. https://doi.org/10.1111/febs.12878
  34. Lee, J. K.; Park, K. S.; Park, S.; Park, H.; Song, Y. H.; Kang, S. H.; Kim, H. J. Cryobiology 2010, 60, 222. https://doi.org/10.1016/j.cryobiol.2010.01.002
  35. Do, H.; Lee, J. H.; Lee, S. G.; Kim, H. J. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 806. https://doi.org/10.1107/S1744309112020465
  36. Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272. https://doi.org/10.1107/S0021889811038970
  37. Ritchie, D. W.; Venkatraman, V. Bioinformatics 2010, 26, 2398. https://doi.org/10.1093/bioinformatics/btq444
  38. Lawrence, M. C.; Colman, P. M. J. Mol. Biol. 1993, 234, 946 https://doi.org/10.1006/jmbi.1993.1648
  39. Cheng, J.; Hanada, Y.; Miura, A.; Tsuda, S.; Kondo, H. Biochem. J. 2016, 473, 4011. https://doi.org/10.1042/BCJ20160543
  40. Scotter, A. J.; Marshall, C. B.; Graham, L. A.; Gilbert, J. A.; Garnham, C. P.; Davies, P. L. Cryobiology 2006, 53, 229. https://doi.org/10.1016/j.cryobiol.2006.06.006
  41. Graham, L. A.; Marshall, C. B.; Lin, F. H.; Campbell, R. L.; Davies, P. L. Biochemistry 2008, 47, 2051. https://doi.org/10.1021/bi7020316
  42. Mok, Y. F.; Lin, F. H.; Graham, L. A.; Celik, Y.; Braslavsky, I.; Davies, P. L. Biochemistry 2010, 49, 2593. https://doi.org/10.1021/bi901929n
  43. Lin, F. H.; Davies, P. L.; Graham, L. A. Biochemistry 2011, 50, 4467. https://doi.org/10.1021/bi2003108
  44. Sun, T.; Lin, F. H.; Campbell, R. L.; Allingham, J. S.; Davies, P. L. Science 2014, 343, 795. https://doi.org/10.1126/science.1247407