• Title/Summary/Keyword: Ground reinforcement method

Search Result 336, Processing Time 0.025 seconds

A Case Study on Deformation Conditions and Reinforcement Method of Cavity behind the Lining of Domestic Old Tunnel (국내 재래식 터널의 변상현황과 배면공동 보강 사례연구)

  • Kim, Young-Muk;Lim, Kwang-Su;Ma, Sang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1343-1350
    • /
    • 2005
  • In this study, the whole deformation conditions of domestic old tunnels and reinforcement methods for deformation tunnels were investigated and analysed, and the present conditions, occurrence cause and reinforcement methods of cavity behind the tunnel lining were investigated and analysed comprehensively. The deformation causes of domestic old tunnels could be classified in three kinds : change of earth pressure operating tunnel ground, material problem of concrete lining, mistake of design and construction. As a result of analysis, the tunnel deformation was occurred by not specific cause but various cause As a result of investigation for 455 domestic tunnel data, more than 70% of the tunnel deformation was related to leakage and the other deformation cause also accompanied leakage mostly. An applied reinforcement method was related to leakage and flood prevention measures, but application of reinforcement method for boundary area between tunnel and ground and tunnel periphery which influence on the tunnel stability was still defective. The cavity of domestic old tunnel occupied about 16% of the total tunnel length and about 68% of cavity was located in the crown of tunnel, and besides, the occurrence cause of cavity was analysed to design, construction and management cause. The filling method for cavity using filling material was comprehensively appling to cavity behind tunnel lining.

  • PDF

Case Studies on Ground Improvement by High Pressure Jet Grouting(II) Effect on the Ground Reinforcement and Cut off of Ground Water Behind Temporary Retaining Walls (고압분사주입공법에 의한 지반개량사례연구(II) -흙막이벽 배면지반보강 및 차수효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Jeong, Hyeong-Yong
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.5-16
    • /
    • 1996
  • When braced excavation with temporary retaining wall installation, is performed in loose sand with high ground water level boiling may be induced and considerable damage on the excavation works and structures in the vicinity can take place. Recently, for the purpose of reinforcement of ground and cut-off of ground water behind the temporary retaining wall, high pressure jet grouting is widely used. The purpose of this paper is to investigate the effects of jet grouting on ground reinforcement and cut -off of the ground water behind temporary retaining walls for braced excavation. A series of both laboratory and field tests has been performed. The test results show that high pressure jet grouting has sufficient effects on reinforcement of stiffness of ground and retaining wall. The permeability of the improved ground was 10-f_ 10-3cm l s smaller than those of the original ground. Therefore, the effect on cut off of ground water behind temporary retaining walls could be improved by high pressure jet grouting method.

  • PDF

A study on the characteristics of tunnel deformation and support system according to tunnel portal reinforcement method (터널 갱구부 보강방법에 따른 터널 변형 및 지보재 응력특성에 관한 연구)

  • Moon, Kyoung-Sun;Seo, Yoon-Sic;Kang, Si-On;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.625-639
    • /
    • 2018
  • This study is about the reinforcing type of reinforcement method which is reinforced in tunnel portal of tunnel with bad ground condition. Generally, it is known that the horizontal reinforcement method is more effective than the conventional reinforcement method. However, as a limitation of the tunnel construction technology, it is being constructed by the superposition reinforcement method. In recent years, high-strength large-diameter steel pipes and horizontally oriented longitudes (L = 30.0~50.0 m) construction technology have been developed. Therefore, it is required to study reinforcement method of tunnel portal reinforcement method. Therefore, 3-D numerical analysis (Midas GTS NX 3D) was performed by setting the reinforcement method (No reinforcement type, overlap reinforcement type and horizontal reinforcement type) and ground condition as parameters. As a result, it was considered that the reinforcement effect was the largest as the horizontal reinforcement type of the reinforcement method was the smallest in the displacement and the support material stress. Based on the results of the numerical analysis, horizontal steel pipe grouting was applied to the actual tunnel site. The displacement of the tunnel portal and the stress of the support material occurred within the allowable values and were considered to ensure sufficient stability.

A Study on Anisotropic Reinforcing Mechanism of Umbrella Arch Reinforcement Method in Tunnelling (터널 보강용 강관 다단 그라우팅 공법의 이방성 보강 메카니즘 규명에 관한 연구)

  • 배규진;신휴성;최용기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.245-259
    • /
    • 2003
  • This paper deals with an Umbrealla Arch Reinforcement Method (UARM) in tunnelling. It is known that the mechanism of the reinforcement system is too complex to be simulated in existent finite element (FE) frameworks when considering its complex geometry of pipe arrangements and contribution of each component of the reinforcement to reinforcing effect. In this study a 3-D elastoplastic FE procedure is, therefore, proposed by introducing homogenisation technique, which is used to define mathematically elastic as well as elastoplastic characteristics of a reinforced ground material as a composite. A number of practical suggestions are addressed considering staged constructions of tunnels. For illustrative purposes, a series of parametric studies are undertaken and anisotropic characteristics of the reinforced ground as well as effects of the reinforcement on tunnel convergences are investigated. It is found that the reinforced ground material defined in homogenisation framework has its mechanical characteristics reasonably representing inherent geometrical and quantitative characteristics of each of constituents.

Effect of the Settlement Reduction to each Geosynthetic Reinforced Pile Supported Embankments Design Condition (토목섬유보강 성토지지말뚝의 설계조건별 침하억제 효과)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Moon, In-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1519-1524
    • /
    • 2009
  • Construction of high-speed concrete track embankments over soft ground needs many of the ground improvement techniques. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, another measures should be considered. Especially, since the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this allowable settlement by using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In this paper, three cases with different embankment height and number of geosynthetic reinforcement, were studied through FEM analysis for efficient use of pile net method.

  • PDF

A Study of the Construction Method for Soft Ground Reinforcement of Baekje Dynasty Based on the Low Swamp Remains in the Buyeo Area (백제시대 부여지역 저습지에 조성된 유적에서 나타나는 연약지반 개량공법 연구)

  • Cho, Weon-Chang
    • Journal of architectural history
    • /
    • v.19 no.6
    • /
    • pp.155-171
    • /
    • 2010
  • King Seong carried out the large-scale construction transferring the capital from Wungjin (Gongju) to Sabi (Buyeo) in 538. But because most of the Buyeo area was the low swamp in the time, it needed above all to form a site before transferring the capital. Until recently, in addition to the scientific excavation, the relief excavations for the construction of new building or the formation of road were conducted on many sites in the Buyeo area. As a result, many remains which were formed on the low swamp including the temple site of Neungsan-ri, Dongna Castle, the remains of Ssangbuk-ri (280-5 Bukpo, Hyeonnaedeul) and the remains of Gua-ri were identified. Also in these remains, the various engineering construction methods irrespective of the nature of remains were used for the purpose of the soft ground reinforcement as follows: mattress method of construction, pile designation, stone alignment, filing of decomposed granite soil, culverts and storage tanks. Especially, the mattress method of construction and the pile designation are thought to be the traditional engineering construction method at least in that they are appeared since the Three Han Sates era. And these soft ground construction methods had an effect on the construction of reservoir in Japan at the time. In the future, the construction method for soft ground reinforcement shall be concerned and studied further in the architecture and the civil engineering as well as the archeology.

A Case Study on the Ground Reinforcement Method and Effect of the Failed Tunnel (터널붕괴지반의 보강공법 및 효과에 대한 사례연구)

  • Cho, Hyun;Lim, Jae-Seung;Chung, Yoon-Young;Choi, Sang-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.293-300
    • /
    • 1999
  • The maintenance for the stability of tunnel, especially on downtown area, careful check must be considered during construction stage and after. Moreover we have to achieve the stability of tunnel by ground improvement and reinforcement when ground condition is bad or tunnel failures under the various ground conditions. In this paper, it is presented the case of tunnel failure and the state of restoration by ground reinforcements at seoul subway $\bigcirc$-$\bigcirc$ construction site. For the purpose of ground reinforcement, first, curtain wall was established by chemical grouting. Secondly, cement milk grouting was carried by upper part of tunnel crown. Also Boreholes loading test and tunnel monitoring were carried by in failure site for the long term stability of tunnel.

  • PDF

A Study on the Ground Reinforcement Method of B.G.I (B.G.I 지반보강 공법에 관한 연구)

  • Yoo, Nam-Jae;Seo, Seung-O;Kim, Dong-Gun
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.73-80
    • /
    • 2009
  • This paper is to investigate effect of B.G.I (Best Grouting Innovation) method on reinforcing ground. In this thesis, extensive literature review was performed to summarize theoretical backgrounds of grouting and to compare the applicability of different grouting methods. Unconfined compression test with specimen prepared by injecting different grouts of B.G.I, S.G.R and L.W methods and by changing the curing time were carried out to figure out characteristics of initial unconfined compression strength mobilized in the early stage. As results of test, the compression strength increases with curing times and specimen prepared with grouts of B.G.I method show greater values than others. On the other hands, the measured values of pH are in the range of 7-10 during tests. In field, preliminary construction to main construction at several sites were performed to confirm the effect of reinforcing the ground by application of B.G.I method. From the results of permeability test in field, SPT test and phenol reaction test, it was found that N values after grouting are greater than those before grouting and values of permeability in grouted ground is reduced significantly.

  • PDF

A CASE STUDY OF FEM ANALYSIS ON GROUND REINFORCEMENT USING HORIZONTAL JET GROUT ROOFING IN SOFT GROUND TUNNELING (연약 지층 터널의 보강공법에 관한 FEM 해석 사례연구)

  • 김주봉;문상조
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10a
    • /
    • pp.51-56
    • /
    • 1993
  • This paper presents the FEM anlysis results performed to assess the applicability of Horizontal Jet Grout Roofing, and of ground improvement methods for tunneling in soft ground. Horizontal Jet Grount Roofing Method is applicable to ensure the stability of tunnel face in non-cemeted alluvial strata under high ground water pressure. For applying this method, to ensure the reliability, the Horizontel Jet Grout Roofing should be double lined with pre-grouting to reduce the water inflow during the jet grouting.

  • PDF

Application of the auxiliary tunnel reinforcement design using the decision making tools based on expert system integrated fuzzy inference rule

  • Kim Changyong;Hong Sungwan;Bae Gyujin;Kim Kwangyeom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.262-271
    • /
    • 2003
  • Specification of reinforcement method was suggested according to the ground condition and tunnelling environment such as adjacent building and surface settlement. Tunnel database consists of 8 different groups of data according to the tunnel construction situations and major problems of ground. A tunnel countermeasure expert system based on client/server system was developed with on-line. The expert system provides proper solution to the each construction sites backing up the information of the tunnelling and ground information through Internet. The effective factors of tunnel construction were shown by the analyzing relationship and partial relationship between face stability and RMR factors. This study will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system escaping from the dependence of some experienced experts for the absent of guide.

  • PDF