• Title/Summary/Keyword: Ground cavity

Search Result 225, Processing Time 0.022 seconds

Field Application of RFID for the Cavity Maintenance of Under Pavement (도로하부 공동의 유지관리를 위한 RFID의 현장 적용성 평가)

  • Park, Jeong Jun;Shin, Eun Chul;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.459-468
    • /
    • 2019
  • Purpose: The cavity exploration of the lower part of the road is carried out to prevent ground-sinking. However, the detected communities cannot be identified by the cavity location and history information, such as repackaging the pavement. Therefore, the field applicability of RFID systems was evaluated in this study to enable anyone to accurately identify information. Method: During temporary recovery, tag recognition distance and recognition rate were measured according to underground burial materials and telecommunication tubes using RFID systems with electronic tag chips attached to the bottom of the rubber cap. Result: The perceived distance and perceived rate of depth for each position of the electron tag did not significantly affect the depth up to 15cm, but it did have some effect if the depth was 20cm. In addition, water effects from nearby underground facilities and rainfall are relatively small, and the effects of wind will need to be considered during the weather conditions of the road. Conclusion: The RFID tags for field application of the pavement management system store various information such as location and size of cavity, identification date, cause of occurrence, and surrounding underground facilities to maximize cavity management effect with a system that can be computerized and mobile utilization.

Improvement of Underground Cavity and Structure Detection Performance Through Machine Learning-based Diffraction Separation of GPR Data (기계학습 기반 회절파 분리 적용을 통한 GPR 탐사 자료의 도로 하부 공동 및 구조물 탐지 성능 향상)

  • Sooyoon Kim;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.171-184
    • /
    • 2023
  • Machine learning (ML)-based cavity detection using a large amount of survey data obtained from vehicle-mounted ground penetrating radar (GPR) has been actively studied to identify underground cavities. However, only simple image processing techniques have been used for preprocessing the ML input, and many conventional seismic and GPR data processing techniques, which have been used for decades, have not been fully exploited. In this study, based on the idea that a cavity can be identified using diffraction, we applied ML-based diffraction separation to GPR data to increase the accuracy of cavity detection using the YOLO v5 model. The original ML-based seismic diffraction separation technique was modified, and the separated diffraction image was used as the input to train the cavity detection model. The performance of the proposed method was verified using public GPR data released by the Seoul Metropolitan Government. Underground cavities and objects were more accurately detected using separated diffraction images. In the future, the proposed method can be useful in various fields in which GPR surveys are used.

Analysis of the Effect of Pavement Crack Depth of the Cavity Management Grade (포장 균열 깊이가 공동 관리 등급에 미치는 영향 분석)

  • Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.449-457
    • /
    • 2020
  • Purpose: The Seoul Metropolitan Government classifies the cavity risks into emergency, priority, general, and observation grades in consideration of the cavity size, asphalt pavement thickness, and pavement depth based on the cavity management grade criteria of Seoul. In this study, the depth of cracking was measured at 17 cracks identified by checking the pavement condition of the cavity at 265 cavities found in the 2019 cavity investigation service. Method: In the first phase, crack width and depth were measured using a vernier caliper, taper gauge, and depth gauge to check the cracks of the identified cavities. In the second phase, the location of the largest crack in the upper road surface was confirmed, and A.C. was drilled to further measure the crack depth. Results: As a result, the cavity management level was raised in nine of the 17 test cavity identified. Therefore, in case of emergency and priority recovery, the grade should be adjusted according to the depth of pavement crack and the thickness of residual A.C. pavement. Conclusion: In the case of cracks in the upper part of the cavity, the crack progression must be determined through the perforation and the remaining asphalt concrete thickness must be determined to determine the cavity grade.

Design of Cavity-Backed High Gain Dual Band Microstrip Antenna Using Frequency Selective Surface (FSS 구조를 이용한 Cavity-Backed 고이득 이중 대역 마이크로스트립 안테나 설계)

  • Kim, Byoung-Chul;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.152-163
    • /
    • 2010
  • In this paper, a cavity-backed high gain dual band microstrip antenna with Frequency Selective Surface space(FSS) for WLAN is proposed. The proposed antenna that operates in IEEE 802.11a/b bands with similar radiation pattern and gain is fabricated on RO4003 substrate with a dielectric constant of 3.38. The size of the antenna is $71.5{\times}42.0{\times}6.6\;mm^3$, and the FSS size is $120.0{\times}120.02\;mm^3$. The ground plane size including cavity is $150.0{\times}145.0\;mm^3$. The antenna is fed by coaxial cable. The simulated bandwidths of the antenna are 2.369~2.517 GHz and 5.608~5.833 GHz for VSWR<2. The gains are 11.23 dBi and 12.60 dBi, respectively, for the lower and upper bands.

Wideband Cavity Back Antenna for Signal Intelligence (신호 정보 수집용 광대역 캐비티 백 안테나)

  • Jeoung, Gu-Ho;Lee, Seong-Kyu;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1044-1052
    • /
    • 2016
  • In this paper, a cavity back slot antenna with a rotated rectangular patch is proposed. The proposed antenna consists of a ground plane with cavity structure, a microstrip feed line, and a rectangular patch with slot. With a dimension of $55mm{\times}40mm{\times}10mm$, the proposed antenna has the wide bandwidth due to the cavity structure. Measured 10 dB return loss bandwidth and fractional bandwidth of the proposed antenna is 5,030 MHz(3.02~8.05 GHz) and 90.9 % at the center frequency of 5.05 GHz. The proposed antenna is designed and simulated using ANSYS HFSS v.15.0.0. The designed antenna is fabricated and tested to validate its performances.

An Analysis of the Hybrid Finite Element Method for Scattering and Radiation by Microstrip Patch Antennas and Arrays Residing in a Cavity in a Ground Plane (접지평면상의 공간에 위치한 마이크로스트립 페치 단일 안테나와 배열 안테나에 의한 산란과 복 사에 관한 혼합유한요소법 해석)

  • 안중수;박동희;권희훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2468-2478
    • /
    • 1994
  • A hybrid finite element method is presented for a characterization of scattering an radiation properties of microstrip patch and arrays residing in a cavity recessed in a ground plane. The technique combines the finite element and boundary integral methods to formulate a system for the solution of fields at the aperture and the scattering field and radar cross sections at free space. By virture of the finite element method, the proposed technique is applicable to patch antennas and arrays residing on or embeded in a layered dielectric loss/lossless substrate and is also capable of treating various feed configuration. Several numerical results are presented demonstrating the validity, efficiency and capability of the technique.

  • PDF

Model Scramjet Engine Design for Ground Test (지상시험용 모델 스크램제트 엔진의 설계)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-13
    • /
    • 2007
  • Scramjet engine is one of the most promising propulsion systems for future transport. For the ground test with T4 shock tunnel, model scramjet engine is designed. Design flight Mach number is 7.6 and flight altitude is 30km. Engine intake is designed by Levenberg-Marquardt optimization method and Korkegi relation. Furthermore, cowl cut out region is installed by the rule of Kantrowitz limit. Inside the combustor, cavity type flame holder is installed. Cavity is designed by Rayleigh line relation and PSR model. Numerical analysis is performed for the design confirm.

Pullout Resistance Increase in Soil-Nailing with Pressurized Grouting: Verification of Theoretical Solution (압력식 쏘일네일링의 인발저항력 증가: 이론적 검증)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.419-433
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of residual stress; and the increase of coefficient of pullout friction. From the laboratory tests, it was found that residual stress in borehole increases by pressurized grouting and dilatancy angle could be estimated by cavity expansion theory using the measured wall displacements. From the field test results, the pullout resistance of soil-nailing with pressurized grouting was found to be 10% larger than that of soil-nailing with gravitational grouting, mainly caused by mean normal stress increase and dilatancy effect. So, the pullout resistance could be estimated by considering these two effects. The radial displacement increases with dilatancy angle increase and the dilatancy angle decreases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the cavity expansion theory.

  • PDF

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Axle When Excited by a 3-D Impact at the Center of Contact Patch (접지면 중앙에서 3차원 방향의 충격 가진에 의한 타이어의 3차원 진동형이 축에 미치는 영향)

  • 김용우;남진영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.171-182
    • /
    • 2003
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire in ground contact are performed by a 3-D impact at the center of contact patch to investigate which modes of tire influence the vibration of wheel and axle. Through the experiment, the vibration transmission properties from tire to axle are examined. And we have compared the influential tire modes when the tire is excited by a vertical impact with those when excited by the 3-D impact. Additionally, the modes of ground contact tire are compared with those of the suspended tire.

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Wheel and Axle When Excited by a Vertical Impact at the Center of Contact Patch (접지면 중앙에서 수직방향 가진에 의한 타이어의 3차원 진동모드가 휠/축에 미치는 영향)

  • Kim, Yong-Woo;Nam, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2004
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire with ground contact are performed by impacting the tire in the radial direction at the center of contact patch. To investigate which modes of tire influence the vibration of wheel and axle when the tire is in contact with ground, the vibration characteristics such as frequency response functions, natural frequencies and their mode shapes from tire to wheel/axle are examined.