DOI QR코드

DOI QR Code

Design of Cavity-Backed High Gain Dual Band Microstrip Antenna Using Frequency Selective Surface

FSS 구조를 이용한 Cavity-Backed 고이득 이중 대역 마이크로스트립 안테나 설계

  • Kim, Byoung-Chul (School of Electrical and Computer Engineering, Ajou University) ;
  • Choo, Ho-Sung (School of Electronics and Electrical Engineering, Hongik University) ;
  • Park, Ik-Mo (School of Electrical and Computer Engineering, Ajou University)
  • 김병철 (아주대학교 전자공학부) ;
  • 추호성 (홍익대학교 전자전기공학부) ;
  • 박익모 (아주대학교 전자공학부)
  • Published : 2010.02.28

Abstract

In this paper, a cavity-backed high gain dual band microstrip antenna with Frequency Selective Surface space(FSS) for WLAN is proposed. The proposed antenna that operates in IEEE 802.11a/b bands with similar radiation pattern and gain is fabricated on RO4003 substrate with a dielectric constant of 3.38. The size of the antenna is $71.5{\times}42.0{\times}6.6\;mm^3$, and the FSS size is $120.0{\times}120.02\;mm^3$. The ground plane size including cavity is $150.0{\times}145.0\;mm^3$. The antenna is fed by coaxial cable. The simulated bandwidths of the antenna are 2.369~2.517 GHz and 5.608~5.833 GHz for VSWR<2. The gains are 11.23 dBi and 12.60 dBi, respectively, for the lower and upper bands.

본 논문에서는 Frequency Selective Surface(FSS)를 이용하여 IEEE 802.11a/b 대역에서 11 dBi 이상의 이득과 유사한 모양의 복사 패턴을 가지며 동작하는 cavity-backed 이중 대역 마이크로스트립 안테나를 제안한다. 안테나의 크기는 $71.5{\times}42.0{\times}6.6\;mm^3$이고, FSS의 크기는 $120.0{\times}120.02\;mm^3$, 그리고 cavity를 포함한 접지면의 크기는 $150.0{\times}145.0\;mm^3$이다. 안테나는 동축 케이블을 이용하여 급전하였으며, 안테나와 FSS는 비유전율이 3.38인 RO4003 기판 위에 설계하였다. 전산 모의 실험 결과, VSWR<2 기준으로 2.369~2.517 GHz와 5.608~5.833 GHz의 대역폭을 가지며, 각 대역의 중심 주파수에서의 이득은 11.23 dBi와 12.60 dBi다.

Keywords

References

  1. H. J. Lee, P. S. Kim, T. H. Kim, and D. G. Oh, "Broadband systems based on DVB-S2 and mobile DVB-RCS and their future applications to broadband mobiles", in Proc. IEEE IWSSC, pp. 98-102, 2006. https://doi.org/10.1109/IWSSC.2006.256000
  2. A. Bazzi, Andrea G. G. Pasolini, and V. Schena, "Gap fillers for railway tunnels: Technologies and performance", in Proc. EMC EuropeWorkshop 2005-Electromagnetic Compatibility of Wireless Systems, pp. 147-150, 2005.
  3. J. G. Ryu, S. M. Han, M. S. Shin, D. I. Chang, and H. J. Lee, "The gap filler technology for mobile satellite system", Advanced Satellite Mobile Systems, pp. 333-336, 2008.
  4. N. K. Lee, H. K. Kim, D. I. Chang, and H. J. Lee, "Providing seamless services with satellite and terrestrial network in mobile two way satellite environments", Lecture Notes in Computer Science, vol. 4773, pp. 551-554, 2007. https://doi.org/10.1007/978-3-540-75476-3_63
  5. R. B. Konda, G. M. Pushpanjali, S. N. Mulgi, S. K. Satnoor, and P. V. Hunagund, "Microstrip array antenna for multiband operation", in Proc. Recent Advances in Microwave Theory and Applications, MICROWAVE 2008. International Conference, pp. 511-513, Nov. 2008.
  6. F. Yang, Y. Rahmat-Samii, "Step-like structure and EBG structure to improve the performance of patch antennas on high dielectrics substrate", in Proc. IEEE Antennas Propagat. Soc. Int. Symp., vol. 2, pp. 482-485, 2001. https://doi.org/10.1109/APS.2001.959766
  7. Y. Rahmat-Samii, "The marvels of electromagnetic bandgap(EBG) structures: Novel microwave and optical applications", in Proc. 2003 SBMO/IEEE MTTS IMOC 2003, vol. 1, pp. 265-275, 2003. https://doi.org/10.1109/IMOC.2003.1244869
  8. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band", IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059-2074, 1999. https://doi.org/10.1109/22.798001
  9. Y. L. R. Lee, A. Chauraya, D. S. Lockyer, and J. C. Vardaxoglou, "Dipole and tripole metallodielectric photonic bandgap(MPBG) structures for microwave filter and antenna applications", IEE Proc. Optoelectron., vol. 147, pp. 395-400, 2000. https://doi.org/10.1049/ip-opt:20000892
  10. R. L. Li, G. DeJean, M. M. Tentzeris, J. Laskar, and J. Papapolymerou, "LTCC multilayer based CP patch antenna surrounded by a soft-and-hard surface for GPS applications", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., vol. 2, pp. 651-654, 2003. https://doi.org/10.1109/APS.2003.1219320
  11. R. Li, G. DeJean, M. M. Tentzeris, J. Papapolymerou, and J. Laskar, "Radiation-pattern improvement of patch antenna on a large-size substrate using a compact soft-surface structure and its realization on LTCC multilayer technology", IEEE Trans. Antennas Propagat., vol. 53, pp. 200-208, 2005. https://doi.org/10.1109/TAP.2004.840754
  12. S. W. Su, K. L. Wong, Y. T. Cheng, and W. S. Chen, "High-gain broadband patch antenna with a cavity ground for 5-GHz WLAN operation", Microwave Optical Technol. Lett., vol. 41, pp. 397-399, 2004. https://doi.org/10.1002/mop.20151
  13. W. S. T. Rowe, R. B. Waterhouse, "Investigation of edge-fed cavity backed patches and arrays", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., pp. 3967-3970, 2006. https://doi.org/10.1109/APS.2006.1711494
  14. A. S. Elmezughi, W. S. T. Rowe, and R. B. Waterhouse, "Further investigations into edge-fed cavity backed patches", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., pp. 920-923, 2007. https://doi.org/10.1109/APS.2007.4395645
  15. Minh Tuan Ngyuen, Byoungchul Kim, Hosung Choo, and Ikmo Park, "Effects of a cavity structure on a square microstrip patch antenna built on a low-permittivity substrate with an air gap", 종합학술발표회논문집, 한국전자파학회, 19(1), p. 55, 2009년 11월.
  16. Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of frequency selective surface(FSS) type superstrate for dual-band directivity enhancement of microstrip patch antenna", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., vol. 3, pp. 2-5, 2005. https://doi.org/10.1109/APS.2005.1552158
  17. Z. Ge, W. Zhang, Z. Liu, and Y. Gu, "Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover", Microwave and Optical Technol. Lett., vol. 48, pp. 1272-1274, 2006. https://doi.org/10.1002/mop.21674
  18. G. V. Trentini, "Partially reflecting sheet arrays", IRE Trans. Antennas Propagat., vol. 4. pp. 666-671, 1956. https://doi.org/10.1109/TAP.1956.1144455
  19. J. R. James, S. J. A. Kinany, P. D. Peel, and G. Andrasic, "Leaky-wave multiple dichroic beamformers", Electron. Lett., vol. 25, 1989.
  20. J. Kennedy, R. Eberhart, "Particle swarm optimization", in Proc. IEEE Neural Networks (perth, Australia), vol. 4, pp. 1942-1948. 1995.
  21. J. Kennedy, R. Eberhart, "A discrete binary version of the particle swarm algorithm", in Proc. Syst., Man, and Cyber., vol. 5, pp. 4104-4108, 1997.
  22. J. Robinson, Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics", IEEE Trans. Antennas Propagat., vol. 52, pp. 397-407, 2004. https://doi.org/10.1109/TAP.2004.823969