DOI QR코드

DOI QR Code

Analysis of the Effect of Pavement Crack Depth of the Cavity Management Grade

포장 균열 깊이가 공동 관리 등급에 미치는 영향 분석

  • Park, Jeong Jun (Incheon Disaster Prevention Research Center, Incheon National University)
  • Received : 2020.05.13
  • Accepted : 2020.07.03
  • Published : 2020.09.30

Abstract

Purpose: The Seoul Metropolitan Government classifies the cavity risks into emergency, priority, general, and observation grades in consideration of the cavity size, asphalt pavement thickness, and pavement depth based on the cavity management grade criteria of Seoul. In this study, the depth of cracking was measured at 17 cracks identified by checking the pavement condition of the cavity at 265 cavities found in the 2019 cavity investigation service. Method: In the first phase, crack width and depth were measured using a vernier caliper, taper gauge, and depth gauge to check the cracks of the identified cavities. In the second phase, the location of the largest crack in the upper road surface was confirmed, and A.C. was drilled to further measure the crack depth. Results: As a result, the cavity management level was raised in nine of the 17 test cavity identified. Therefore, in case of emergency and priority recovery, the grade should be adjusted according to the depth of pavement crack and the thickness of residual A.C. pavement. Conclusion: In the case of cracks in the upper part of the cavity, the crack progression must be determined through the perforation and the remaining asphalt concrete thickness must be determined to determine the cavity grade.

연구목적:서울시는 공동관리 등급 기준에 따라 공동의 규모, 아스팔트포장 두께, 포장면의 균열깊이를 고려하여 긴급, 우선, 일반, 관찰등급으로 공동의 위험도를 분류하고 있다. 본 연구에서는 2019년 서울시 공동조사용역에서 발견된 265개소의 공동의 상부 포장상태를 확인하여 포장균열이 확인된 17개소에 대하여 균열깊이를 측정하였다. 연구방법: 1차에서는 확인된 공동의 균열 확인을 위하여 버니어 캘리퍼스, 테이퍼 게이지, 깊이 게이지를 활용하여 균열 폭 및 깊이를 측정하였다. 2차에서는 상부 노면에서 가장 크게 균열이 발생한 위치를 확인하여 아스콘을 천공 후 균열 깊이를 추가로 측정하였다. 연구결과:확인된 시험공동 17개소 중 9개소에서 공동 관리 등급이 상향 조정되었다. 따라서, 긴급복구와 우선복구의 경우에는 포장 균열 깊이와 잔여 아스팔트 콘크리트 포장 두께에 따라 등급 조정이 필요하다. 결론:공동 상부에 균열이 발생한 경우는 천공을 통하여 균열 진행 상태를 파악하고 잔여 아스팔트 콘크리트 두께를 확인하여 공동등급을 결정해야한다.

Keywords

References

  1. Cassidy, N.J., Eddies, R., Dods, S. (2011). "Void detection beneath reinforced concrete sections: The practical application of ground penetrating radar and ultrasonic techniques." Journal of Applied Geophysics, Vol. 74, pp. 263-273. https://doi.org/10.1016/j.jappgeo.2011.06.003
  2. Chae, H.Y. (2017). "Study on subsurface collapse of road surface and cavity search in urban area." Tunnel & Underground Space, Vol. 27, No. 6, pp. 387-392. https://doi.org/10.7474/TUS.2017.27.6.387
  3. David, J.D. (2005). Ground Penetrating Radar. Encyclopedia of RF and Microwave Engineering. John Willy & Sons, Inc., Hoboken, NJ, USA.
  4. Endres, A.L., Clement, W.P. Rudolph, D.L. (2000). "Ground penetrating radar imaging of an aquifer during a pumping test." Ground Water, Vol. 38, No. 4, pp. 566-576. https://doi.org/10.1111/j.1745-6584.2000.tb00249.x
  5. Han, Y.S. (2018). "Numerical analysis and exploring of ground condition during groundwater drawdown environment in open-cut type excavation." Journal of the Korean Geotechnical Society, Vol. 34, No. 11, pp.93-105. https://doi.org/10.7843/KGS.2018.34.11.93
  6. Hagrey, S.A., Muller, C. (2000). "GPR study of pore water content and salinity in sand." Geophysical Prospecting, Vol. 48, No. 1, pp. 63-85. https://doi.org/10.1046/j.1365-2478.2000.00180.x
  7. Kang, Y.V., Hsu, H.C. (2013). "Application of ground penetrating radar to identify shallow cavities in a coastal dyke." Journal of Applied Science and Engineering, Vol. 16, No. 1, pp. 23-28.
  8. Kim, B.W., Kim, H.S., Choi, D.H., Koh, Y.K. (2013). "Estimation of ground water table using Ground Penetration Radar (GPR) in a sand tank model and at an alluvial field site." The Journal of Engineering Geology, Vol. 23, No. 3, pp. 201-216. https://doi.org/10.9720/kseg.2013.3.201
  9. Korean Society of Earth and Exploration Geophysicists (2011). Practical Guidelines for Geophysical Exploration, Hanrimwon, p. 397.
  10. Kuroda, S., Jang, H. and Kim, H. J. (2009). "Time-laps borehole data monitoring of an infiltration experiment in the vadose zone." Journal of Applied Geophysics, Vol. 67, No. 4, pp. 361-366. https://doi.org/10.1016/j.jappgeo.2008.07.005
  11. Lee, K., Kim, D., Park, J.J. (2017). "Study on management system of ground sinking based on underground cavity grade." Journal of Geosynthetics Society, Vol. 16, No. 2, pp.23-33.
  12. Park, J.J., Chung, Y., Hong, G. (2019a). "A Method for cavity scale estimation based on ground-penetration radar explorations: An experimental study." Advances in Civil Engineering, Vol. 2019, p. 13.
  13. Park, J.J., Shin, E.C., Kim, I.D. (2019b). "Field application of RFID for the cavity maintenance of under pavement." Journal of the Society of Disaster Information, Vol. 15, No. 4, pp. 459-468.
  14. Park, J.J., Shin, E.C., Park, K.S., Shin, H.S., Hong, G. (2018). "An experimental study on detecting materials of GPR for maintenance of restored cavities." Journal of the Society of Disaster Information, Vol. 14, No. 4, pp. 430-439.
  15. Pyke, K., Eyuboglu, S., Daniels, J.J., Vendl, M. (2008). "A controlled experiment to determine the water table response using ground penetration radar." Journal of Environmental and Engineering Geophysics, Vol. 13, No. 4, pp. 335-342. https://doi.org/10.2113/JEEG13.4.335
  16. Shin, E.C., Park, K.S., Park, J.J. (2019). "A fundamental experiment for field application of the under pavement cavity management system using RFID." Journal of the Society of Disaster Information, Vol. 15, No. 3, pp. 391-401.