• 제목/요약/키워드: Ground Excavation

검색결과 927건 처리시간 0.026초

지반굴착과 주변 구조물 손상평가 - 기본개념 (Excavation and Building Damage Assessment - Fundamentals)

  • 유충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.263-270
    • /
    • 2002
  • During deep excavation, changes in the state of stress in the ground mass around the excavation and subsequent ground losses inevitably occur. These changes in the stress and ground losses are reflected on surrounding ground in the form of ground movements, which eventually Impose strains onto nearby structures through translation, rotation, distortion, and possibly damage. A substantial portion of the cost of deep excavations in urban environments is, therefore, devoted to prevent ground movements. Prediction of ground movements and assessment of the risk of damage to adjacent structures has become an essential part of the planning, design, and construction of a deep excavation project in the urban environments. This paper presents excavation-induced ground movement characteristics as well as important issues related to excavation-induced building damage assessment.

  • PDF

원형 수직구 굴착에 따른 발생 지반침하 분석 (Analysis of ground settlement due to circular shaft excavation)

  • 손무락;이강렬
    • 한국터널지하공간학회 논문집
    • /
    • 제25권2호
    • /
    • pp.87-99
    • /
    • 2023
  • 지반굴착은 필연적으로 인접지반의 지반변위를 유발시키며, 지반변위에 노출된 구조물 및 시설물들은 다양한 피해를 입을 수 있다. 따라서 굴착유발 인접구조물 및 시설물의 손상 및 피해를 최소화하기 위해서는 우선적으로 굴착으로 인해 발생하는 인접지반에서의 지반변위(침하 및 수평변위)를 예측하여야 한다. 흙막이 굴착 유발 지반변위 정보는 상대적으로 많이 존재하지만 원형 형태의 수직구 굴착에 대한 지반변위 정보는 충분치 않다. 본 연구에서는 수직구 굴착에 대한 사례분석 및 흙막이 굴착과의 비교를 통해서 수직구 굴착유발 인접지반 침하예측에 대한 정보를 제공하고자 한다. 본 연구를 통해서 수직구 굴착 시 침하관리 기준으로서 흙막이 굴착의 침하기준을 사용하는 것은 안전성 측면에서 보수적인 접근방법으로 판단되나 경제성 측면을 고려할 때 벽체의 과다설계를 초래할 수 있어 수직구 굴착에 대해 보다 합리적인 침하기준이 필요한 것으로 나타났다.

굴착유발 지반변위에 의한 인접구조물의 거동 및 손상도 예측 (Building Response to Excavation-Induced Ground Movements and Damage Estimation)

  • 손무락
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.249-256
    • /
    • 2006
  • New infrastructures and buildings are being constructed increasingly in congested urban areas, and excavation-induced ground movements often cause distortion and damage to adjacent buildings. Protection of adjacent structures occupies a major part of the cost, schedule and third-party impacts of urban development. To limit damage or mitigate their effects on nearby structures, it is highly important to understand the whole mechanism from excavation to building damage, and to estimate building damage reliably before excavation and provide appropriate measures. This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions for ground and structures, and a building damage criterion, which is based on the state of strain, is proposed. The criterion is compared with other existing damage estimation criteria and a procedure is finally provided for estimating building damage due to excavation-induced ground movements.

  • PDF

장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(II) (Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(II))

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.248-259
    • /
    • 2010
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces one example of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. The characteristics of ground deformation and strut axial force change, the measured data obtained during construction process, were analysed, the effects of relatively deeper excavation than the specification on one excavation side and rapid drawdown of ground water level on the other excavation side were deeply investigated from the viewpoint of mutual influences between ground deformations of both excavation sides and strut axial force changes. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

지반특성곡선 개념을 이용한 터널굴착 거동해석 (Ground Deformation Analysis of Tunnel Excavation Based on the Ground Characteristic Line Concept)

  • 손준익;정하익
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.118-125
    • /
    • 1992
  • The ground deformation due to the tunnel excavation is dependent on various factors such as ground condition, geometry of the tunnel, excavation method, installation of support members, construction condition of each excavation stage, etc. And the distance from the facing effects significantly the stress conditions of the supported and unsupported ground due to the 3-dimensional structural nature of the excavated tunnel. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied against the surface of excavated ground. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members.

  • PDF

도심지 굴착공사에 따른 인접지반 및 구조물 침하원인 분석 (The contiguity ground and structures sinkage analysis of in city excavation)

  • 성주현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1301-1306
    • /
    • 2009
  • Recently, urban excavations are one of most frequent geotechnical work according to construction of a high rise building and subway. These kind of excavation affect to a adjacent ground or structure and it can trigger various severe accidents. Generally, the ground is closer to the excavation site, the deformation become larger. In this study, special ground settlement case due to adjacent ground excavation is presented and a cause of deformation is examined by various geotechnical exploration, lab-testing and numerical analysis.

  • PDF

지반함몰 위험등급 분류(GSRp)의 굴착현장 사례 연구 (Case Studies of Ground Subsidence Risk Ratings (GSRp) Applied to the Excavation Sites)

  • 신상식;임명혁;김학준
    • 지질공학
    • /
    • 제29권3호
    • /
    • pp.289-302
    • /
    • 2019
  • 최근 굴착현장 인근의 지반함몰 발생사례가 증가함에 따라 사전에 지반함몰 가능성을 예측할 수 있는 연구가 진행되고 있다. 본 연구에서는 기존 연구에 의해 개발된 굴착 전 지반함몰 위험등급 평가 시트인 GSRp를 실제 굴착 현장에 적용하여 현장 적용성을 검증하였다. 각각 다른 지반조건을 가진 5개 굴착현장에 대하여 지반함몰 위험등급을 평가한 결과, GSRp 점수는 40~79점으로 산출되어 대부분 II등급(우수지반)~III등급(양호지반)으로 분류되었다. 평가방법의 신뢰성 검증을 위하여 계측결과에 의해 실측된 수평변위량과 비교 분석하였다. 본 연구현장의 수평변위량은 허용치의 25~47%로 나타나 지반함몰 위험이 낮게 평가된 GSRp 결과와 일치하였다. 향후 지반함몰 위험성이 높은 불량한 지반을 대상으로 하는 현장 적용에 대한 연구가 진행되어 검증과 보완이 이루어진다면 GSRp 평가방법이 굴착 전 지반함몰 위험도를 예측하는 평가 도구로 활용될 수 있을 것으로 기대된다.

근접 깊은 굴착에서 천공장비에 의한 지반교란 특성 사례 연구 (Case Study of Ground Disturbance Characteristic due to Drilling Machine in Adjacent Deep Excavation)

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.77-84
    • /
    • 2003
  • Deep excavations in the urban areas have been frequently going on in large scale. Soil-nailing and Earth-anchor supporting methods are generally used in deep excavation. These construction methods cause ground disturbances during drilling process, and damages of adjacent structures and ground due to the differential settlement throughout construction period, and unexpected behaviors of supporting system according to the characteristics of drilling machine and ground condition. This article introduces two actual examples of adjacent deep excavation for the construction of university buildings in granitic Seoul area. The important results of construction and measurements obtained using Crawler drilling machine for Soil-nailing and Earth-anchor supporting methods are summarized. And some suggestions are given to improve and develop the technique of design and construction in the deep excavation projects having similar ground condition and supporting method.

  • PDF

축소모형실험을 이용한 지반굴착시 주변 지반 거동 연구 (Laboratory investigation on deep excavation-induced ground movements)

  • 유충식;이성우;이봉원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1476-1483
    • /
    • 2005
  • This paper presents the results of small scale model tests on the behavior of propped wall and ground movements during deep excavation. Small scale model tests were performed in order to investigate the effects of various influencing factors on the deep excavation, such as stiffness of ground and unsupported span length. The results of model tests indicated that the wall behavior is significantly influenced not only by the stiffness of ground but by the over-excavation, and that the wall behavior can be reduced by decreasing the unsupported span length and increasing the stiffness of ground.

  • PDF

인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측 (Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network)

  • 유충식;최병석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF