• Title/Summary/Keyword: Grid method

Search Result 3,444, Processing Time 0.03 seconds

An Active Feedforward Compensation for a Current Harmonics Reduction in Three-phase Grid-connected Inverters (3상 계통 연계형 인버터에서의 전류 고조파 감쇄를 위한 능동형 피드포워드 보상 기법)

  • Park, Byong-Jun;Kim, Rae-Young;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper proposes a current harmonic compensation method for the grid-connected inverter, especially caused by the grid impedance. Grid impedance causes low order harmonics in the grid current and deteriorates power quality. This paper analyzes the negative impact of the grid impedance, and proposes an active feedforward compensation method. Proposing method verified through simulation and experiment with 3-phase 1.5kW voltage source inverter prototype.

A Seamless and Autonomous Mode Transfer Method of Grid-connected Inverter in Microgrid (마이크로그리드에서 계통연계 인버터의 자율적이며 끊김없는 모드전환 기법)

  • Park, Sung-Youl;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.349-355
    • /
    • 2019
  • A grid-connected inverter with critical loads should be able to supply a stable voltage to critical loads at mode change and during clearing time while detecting unintentional islanding. This study proposes a mode transfer method for a grid-connected inverter with critical loads. The proposed method, which integrates the grid-connected and islanded mode control loops into one control block, provides an autonomous and seamless mode transfer from the current control to the voltage control. Therefore, the proposed scheme can supply a stable voltage to critical loads at mode change and during clearing time. Experimental results are provided to validate the proposed method.

Turbulent Flow Simulations on 2-Dimensional Ground Effect Part I. Verification on the Overlap Grid Method (2차원 지면 효과에 대한 난류 유동장 해석 Part I. 중첩 격자 기법 적용에 대한 연구)

  • Kim, Yoon-Sik;Lee, Jae-Eun;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.661-669
    • /
    • 2007
  • Study on the feasibility assessment for applying the overlap grid method to numerical calculations on the ground effect has been performed. The objective of the present study is to settle the problem in the grid generation process. A low Mach number preconditioned turbulent flow solver using the overlap grid and the multi-block grid methods has been developed and applied to the ground effect simulation around the RAE 101 airfoil. It has been verified that the overlap grid method not only can provide sufficiently accurate solutions but also work out the grid generation problem in the ground effect simulations.

An Optimization Method for the Calculation of SCADA Main Grid's Theoretical Line Loss Based on DBSCAN

  • Cao, Hongyi;Ren, Qiaomu;Zou, Xiuguo;Zhang, Shuaitang;Qian, Yan
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1156-1170
    • /
    • 2019
  • In recent years, the problem of data drifted of the smart grid due to manual operation has been widely studied by researchers in the related domain areas. It has become an important research topic to effectively and reliably find the reasonable data needed in the Supervisory Control and Data Acquisition (SCADA) system has become an important research topic. This paper analyzes the data composition of the smart grid, and explains the power model in two smart grid applications, followed by an analysis on the application of each parameter in density-based spatial clustering of applications with noise (DBSCAN) algorithm. Then a comparison is carried out for the processing effects of the boxplot method, probability weight analysis method and DBSCAN clustering algorithm on the big data driven power grid. According to the comparison results, the performance of the DBSCAN algorithm outperforming other methods in processing effect. The experimental verification shows that the DBSCAN clustering algorithm can effectively screen the power grid data, thereby significantly improving the accuracy and reliability of the calculation result of the main grid's theoretical line loss.

Bayesian Nonstationary Probability Rainfall Estimation using the Grid Method (Grid Method 기법을 이용한 베이지안 비정상성 확률강수량 산정)

  • Kwak, Dohyun;Kim, Gwangseob
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • A Bayesian nonstationary probability rainfall estimation model using the Grid method is developed. A hierarchical Bayesian framework is consisted with prior and hyper-prior distributions associated with parameters of the Gumbel distribution which is selected for rainfall extreme data. In this study, the Grid method is adopted instead of the Matropolis Hastings algorithm for random number generation since it has advantage that it can provide a thorough sampling of parameter space. This method is good for situations where the best-fit parameter values are not easily inferred a priori, and where there is a high probability of false minima. The developed model was applied to estimated target year probability rainfall using hourly rainfall data of Seoul station from 1973 to 2012. Results demonstrated that the target year estimate using nonstationary assumption is about 5~8% larger than the estimate using stationary assumption.

Unstructured Pressure Based Method for All Speed Flows (전 속도영역 유동을 위한 비정렬격자 압력기반해법)

  • Choi, Hyung-Il;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1521-1530
    • /
    • 2002
  • This article proposes a pressure based method for predicting flows at all speeds. The compressible SIMPLE algorithm is extended to unstructured grid framework. Convection terms are discretized using second-order scheme with deferred correction approach. Diffusion term discretization is based on structured grid analogy that can be easily adopted to hybrid unstructured grid solver. This method also uses node centered scheme with edge based data structure for memory and computing time efficiency of arbitrary grid types. Both incompressible and compressible benchmark problems are solved using the above methodology. The demonstration of this method is extended to slip flow problem that has low Reynolds number but compressibility effect. It is shown that the proposed method can improve efficiency in memory usage and computing time without losing any accuracy.

UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOR BLADES USING DIAGONAL IMPLICIT HARMONIC BALANCE METHOD (중첩 격자 기법이 적용된 대각 내재적 조화균형법을 이용한 헬리콥터 로터 블레이드의 비정상 공력 해석)

  • Im, D.K.;Choi, S.I.;Kim, E.;Kwon, J.H.;Park, S.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.70-77
    • /
    • 2012
  • In this paper, diagonal implicit harmonic balance method with overset grid technique is applied to analyze helicopter rotor blade flow in hover and forward flight condition. The chimera grid need interpolation time with sub-grid and background grid in moving problem such as forward flight on every time step. Present method is available enough to reduce the grid module interpolation time. In order to demonstrate present method, Caradonna & Tung's and AH-1G rotor blades are used and the results are compared to other researchers' result and experimental data.

Grid Generation about Full Aircraft Configuration Using Interactive Grid Generator (상호 대화형 격자생성 환경을 이용한 항공기 전기체 격자계 생성)

  • Kim Y. S.;Kwon J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.145-151
    • /
    • 1999
  • An Interactive grid generation program(KGRID) with graphical user interface(GUI) has been improved. KGRID works on the UNLX environment and GUI has been implemented with OSF/Motif and X Toolkit and the graphics language is Open GL for visualization of the 3D objects. It supports more convenient user environment to generate 2D and 3D multi-block structured grid systems. It provides various useful field grid generation methods, which are the algebraic methods, the elliptic partial differential equations method and the predictor-corrector method. It also supports 3D surface grid generation with NURBS(Non-Uniform Rational B-Spline) and various stretching functions to control grid points distribution on curves and surfaces. And some menus are added to perform flexible management, for the objects. We generated surface and field grid system about full aircraft configuration using KGRID. The performance and stability of the KGRID is verified through the generation of the grid system about a complex shape.

  • PDF

Quadrilateral-Triangular Mixed Grid System for Numerical Analysis of Incompressible Viscous Flow (비압축성 점성 유동의 수치적 해석을 위한 사각형-삼각형 혼합 격자계)

  • 심은보;박종천;류하상
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • A quadrilateral-triangular mixed grid method for the solution of incompressible viscous flow is presented. The solution domain near the body surface is meshed using elliptic grid geneator to acculately simulate the viscous flow. On the other hand, we used unstructured triangular grid system generated by advancing front technique of a simple automatic grid generation algorithm in the rest of the computational domain. The present method thus is capable of not only handling complex geometries but providing accurate solutions near body surface. The numerical technique adopted here is PISO type finite element method which was developed by the present author. Investigations have been made of two-dimensional unsteady flow of Re=550 past a circular cylinder. In the case of use of the unstructured grid only, there exists a considerable amount of difference with the existing results in drag coefficient and vorticity at the cylinder surface; this may be because of the lack of the grid clustering to the surface that is a inevitable requirement to resolve the viscous flow. However, numerical results on the mixed grid show good agreements with the earlier computations and experimental data.

  • PDF

Hexagonal Grid Shadow Generation using Bézier Curves (베지어 곡선을 활용한 육각 그리드의 그림자 생성 방법)

  • Minseok Kim;Taekgwan Nam;Youngjin Park
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.47-57
    • /
    • 2023
  • The hexagonal grid structure has been studied for processing and representing spatial information data in Geographic Information Systems. Visualization using a hexagonal grid has high visibility compared to other grid representation methods. However, it is difficult to effectively convey quantitative data and differences between grids depending on the geospatial data represented. In this paper, we propose a method to visually emphasize the hexagonal grid by generating shadow on the outside of the hexagonal grid. To do so, we offset the outer line segments of the hexagonal grid to be emphasized and generate a Bézier curve based on that information to determine the final shadow shape. We also apply variable transparency toward the edges of the shadow because the shadow gradually fades away from the hexagonal grid. We have shown that the proposed method can effectively generate shadow areas given not only a single hexagonal grid but also multiple hexagonal grids and can generate various shadow shapes based on user interface inputs. We apply the proposed method to Yongsan-gu, one of the districts of Seoul, and show the results of visually emphasizing it after generating shadow using the proposed method.