• Title/Summary/Keyword: Grid Interaction

Search Result 259, Processing Time 0.029 seconds

Experiments and analysis of the post-buckling behaviors of aluminum alloy double layer space grids applying ball joints

  • Hiyama, Yujiro;Ishikawa, Koichiro;Kato, Shiro;Okubo, Shoji
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.289-304
    • /
    • 2000
  • This study discusses on the experimental and analytical results of the global buckling tests, carried out on aluminum alloy double layer space grids composed of tubular members, ball joints and connecting bolts at the member ends, with the purpose of demonstrating the effectiveness of a simplified analysis method using an equivalent slenderness ratio for the members. Because very few experiments have been carried out on this type of aluminum space grids, the buckling behavior is investigated experimentally over the post buckling regions using several space grid specimen with various values for the member slenderness ratio. The observed behavior duping the experiments is compared with the analytically obtained results. The comparison is made based on two different schemes; one on the plastic hinge method considering a bending moment-axial force interaction for members and the other on a method using an equivalent slenderness ratio. It is confirmed that the equivalent slenderness method can be effectively applied, even in the post buckling regions, once the effects of the rotational rigidity at the ball joints are appropriately evaluated, because the rigidity controls the buckling behavior. The effectiveness of the equivalent slenderness method will be widely utilized for estimation of the ultimate strength, even in post buckling regions for large span aluminum space grids composed of an extreme large number of nodes and members.

The Numerical Simulation of the Pressure wave for G7 Test Train in the Tunnel (G7 시제 차량의 터널내부 압력파에 대한 수치 해석)

  • 권혁빈;김태윤;권재현;이동호;김문상
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • A numerical simulation has been performed to estimate the transient pressure variation in the tunnel when G7 test train passes through the test tunnel in the Kyoeng-Bu high-speed railway. A modified patched grid scheme is developed to handle the relative motion between a train and a tunnel. Also, a hybrid dimensional approach is proposed to calculate the train-tunnel interaction problem efficiently. An axi-symmetric unsteady Euler solve using the Roe's FDS is used for analyzing a complicated pressure field in tunnel during the test train is passing through the tunnel. Usually, this complex phenomenon depends ell the train speed, train length, tunnel length, blockage ratio between train and tunnel cross-sectional area, relative position between train and tunnel, etc. Therefore, numerical simulation should be done carefully in consideration of these factors. Numerical results in this study would be good guidance to make test plans, test equipments selection and to decide their measuring locations. They will also supply important information to the pressurization equipment for high-speed train.

산소 및 아르곤 이온 보조빔을 이용하여 증착한 저온 Indim Tin Oside(ITO) 박막의 특성 연구

  • 김형종;김정식;배정운;염근영;이내응;오경희
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.100-100
    • /
    • 1999
  • 가시광선 영역에서 높은 광학적 투과성과 함께 우수한 전기 전도성을 갖는 ITO 박막은 디스플레이 소자나 투명전극재료 등 다양한 분야에서 응용성이 더욱 증대되고 있다. 증착기판으로서 유리를 사용할 때 생기는 활용범위 제한을 극복하고자 최근 유기물 위에 증착이 가능한 저온 증착방법에 대한 연구가 활발히 이루어지고 있다. 그 가운데 이온빔과 같은 energetic한 beam을 이용한 박막의 제조는 기판을 플라즈마 발생지역으로부터 분리시켜 이온빔의 flux 및 에너지, 입사각 등의 자유로운 조절을 통해 상온에서도 우수한 성질의 박막 형성 가능성이 제시되어 왔다. 본 연구에서는 ion beam assisted evaporation방법을 이용하여 ITO 박막을 성장시켰으며, ion-surface interaction 효과가 박막 성장주에 미치는 영향을 이해하기 위하여 먼저 반응성 산소 이온빔에 비 반응성 아르곤 이온빔을 다양하게 변화시켜가며 증착하였으며, 이와 더불어 산소 분위기에서 아르곤 이온빔에 의한 ITO 박막의 특성 변화를 각각 관찰하였다. 증착전 후의 열처리 없이 상온에서 비저항이 ~10-4$\Omega$cm 이하로 낮고 80% 이상의 투과율을 갖는 ITO 박막을 성장시켰다. 실험에서 이용된 e-beam evaporation 물질은 In2O3-SnO2(1-wt%)였으며, 이온빔 source는 산소에 의한 filament의 산화를 막기 위해 filament cathodes type이 아닌 rf(radio-frequency)를 사용하였다. 중요 증착변수인 이온빔의 flux 변화는 산소와 Ar의 flow rate를 MFC로 조절하고 rf power를 변화시켜 얻었으며, 이온빔 에너지는 가속 grid의 가속전압 변화와 ion gun과 기판사이의 거리 조절을 통해 최적화하였다. 이온빔의 에너지와 flux는 Faraday cup으로 측정하였으며, 성박된 박막의 특성은 UV-spectrometer, 4-point probe, Hall measurement. $\alpha$-step, XRD, XPS 등을 이용하여 광학적, 전기적, 구조적 특성을 분석하였다.

  • PDF

Numerical Simulation of Floating Body Motion in Surface Waves by use of a Particle Method (입자법을 이용한 파랑중 부유체 운동의 수치시뮬레이션)

  • Jung, Sung-Jun;Park, Jong-Chun;Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • A particle method recognized as one of gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods in order to solve the flow field with complicated boundary shapes. In the present study, breaking waves with a floating body are simulated to investigate fluid-structure interactions in the coastal zone.

  • PDF

Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4-Air$ Diffusion Flame (화염편 모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석)

  • Kim Gunhong;Kim Hoojoong;Kim Yongmo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2005
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept fur simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

CFD simulation of compressible two-phase sloshing flow in a LNG tank

  • Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-57
    • /
    • 2011
  • Impact pressure due to sloshing is of great concern for the ship owners, designers and builders of the LNG carriers regarding the safety of LNG containment system and hull structure. Sloshing of LNG in partially filled tank has been an active area of research with numerous experimental and numerical investigations over the past decade. In order to accurately predict the sloshing impact load, a new numerical method was developed for accurate resolution of violent sloshing flow inside a three-dimensional LNG tank including wave breaking, jet formation, gas entrapping and liquid-gas interaction. The sloshing flow inside a membrane-type LNG tank is simulated numerically using the Finite-Analytic Navier-Stokes (FANS) method. The governing equations for two-phase air and water flows are formulated in curvilinear coordinate system and discretized using the finite-analytic method on a non-staggered grid. Simulations were performed for LNG tank in transverse and longitudinal motions including horizontal, vertical, and rotational motions. The predicted impact pressures were compared with the corresponding experimental data. The validation results clearly illustrate the capability of the present two-phase FANS method for accurate prediction of impact pressure in sloshing LNG tank including violent free surface motion, three-dimensional instability and air trapping effects.

A Study on the Numerical Methodologies of Hydroelasticity Analysis for Ship Springing Problem (스프링잉 응답을 위한 유탄성 해석의 수치기법에 대한 연구)

  • Kim, Yoo-Il;Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.232-248
    • /
    • 2009
  • Numerical methodology to solve ship springing problem, which is basically fluid-structure interaction problem, was explored in this study. Solution of this hydroelasticity problem was sought by coupling higher order B-spline Rankine panel method and finite element method in time domain, each of which is introduced for fluid and structure domain respectively. Even though varieties of different combinations in terms of numerical scheme are possible and have been tried by many researchers to solve the problem, no systematic study regarding the characteristics of each scheme has been done so far. Here, extensive case studies have been done on the numerical schemes especially focusing on the iteration method, FE analysis of beam-like structure, handling of forward speed problem and so on. Two different iteration scheme, Newton style one and fixed point iteration, were tried in this study and results were compared between the two. For the solution of the FE-based equation of motion, direct integration and modal superposition method were compared with each other from the viewpoint of its efficiency and accuracy. Finally, calculation of second derivative of basis potential, which is difficult to obtain with accuracy within grid-based method like BEM was discussed.

Analysis of Interaction Between Recirculating Flow Near The Jet Fan and The Backlayer of Smoke in a Road Tunnel (도로터널에서 제트팬 근처의 재순환유동과 연기 역류현상의 상호작용 분석)

  • Kim, Chang-Kyun;Ryu, Jin-Woong;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.191-201
    • /
    • 2005
  • A numerical analysis was done for a tunnel fire in a 1000m road tunnel. A cartesian coordinate was adopted to make a computational grid sytem which has 448,000 computational cells. A transient flow phenomena in the tunnel was simulated by the commercial code of PHEONICS from the ignition of fire to 600 seconds by the interval of 100 seconds. Total computational time of about 44 hours was required to get a convered solution in each time step. The purpose of this research is to analyze of the backlayering pheonomena and recirculation flow in a tunnel. The compuational results say that the backlayering does not happens near the fire of vehicle in this case because the vehicle fire is located at the outside of recirculation zone of flow ocuured near the jet fan. In this research, onset of backlayering pheonomena could be escaped if jet fan is set 95m in front of the the fire of vehicle.

  • PDF

Unsteady Simulations of the Flow in a Swirl Generator, Using OpenFOAM

  • Petit, Olivier;Bosioc, Alin I.;Nilsson, Hakan;Muntean, Sebastian;Susan-Resiga, Romeo F.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.199-208
    • /
    • 2011
  • This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-${\varepsilon}$ model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against design velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and design profiles. The unsteady pressure fluctuations at four different positions in the draft tube is recorded. A Fourier analysis of the numerical results is compared whit that of the experimental values. The amplitude and frequency predicted by the numerical simulation are comparable to those given by the experimental results, though slightly over estimated.

CFD Analysis of a Partial Admission Turbine Using a Frozen Rotor Method

  • Noh, Jun-Gu;Lee, Eun-Seok;Kim, Jinhan;Lee, Dae-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.861-866
    • /
    • 2004
  • A numerical flow analysis has been performed on the partial admission turbine of KARI turbopump to support the aerodynamic and structural dynamic assessments. The flow-field in a partial admission turbine is essentially three dimensional and unsteady because of a tip clearance and a finite number of nozzles. Therefore the mixing plane method is generally not appropriate. To avoid heavy computational load due to an unsteady three dimensional calculation, a frozen rotor method was implemented in steady calculation. It adopted a rotating frame in the grid block of a rotor blade by adding some source terms in governing equations. Its results were compared with a mixing plane method. The frozen rotor method can detect the variation of flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a idea of wake loss mechanism starting from the lip of a nozzle. This wake loss was assumed to be one of the most difficult issues in turbine designers. Thus, the frozen rotor approach has proven to be an efficient and robust tool in design of a partial admission turbine.

  • PDF