References
- El-Sheikh, A. (1998), "Design of space truss structures", Structural Engineering and Mechanics, 6(2), 185-200. https://doi.org/10.12989/sem.1998.6.2.185
- Eurocode 9 (1997): Design of aluminum structures, Apr.
- Hagginbotham, A.B. and Hanson, R.D. (1976), "Axial hysteretic behavior of steel members", Journal ofStructural Division, 102(ST7), 1365-1381, July.
- Hiyama, Y., Takashima, H., Iijima, T. and Kato, S. (1997), "Experiments and analyses of aluminum singlelayered reticular domes", IASS International Symposium, 307-316, Nov., Singapore.
- Ishikawa, K. and Kato, S. (1997), "Elastic-plastic dynamic buckling analysis of reticular domes subjected toearthquake motion", International Journal of Space Structures, 12(3), 205-215. https://doi.org/10.1177/026635119701200309
- Kahn, L.F. and Hanson, R.D. (1976), "Inelastic cycles of axially loaded steel members", ASCE, ST5, 947-959,May.
- Kato, S. and Murata, M. (1997), "Dynamic elasto-plastic buckling simulation system for single layer reticulardomes with semi-rigid connections under multiple loadings", International Journal of Space Structures, 12(3),161-172. https://doi.org/10.1177/026635119701200305
- Mezzina, M., Prete, G. and Tosto, A. (1975), "Automatic and experimental analysis for a model of space grid inelasto-plastic behavior", Proceedings of the Second International Conference on Space Structures, Universityof Surrey, Guildford.
- Saka, T. and Heki, K. (1984), "The effects of joints on the strength of space trusses", Proceedings of the ThirdInternational Conference on Space Structures, Edited by H. Nooshin, 417-422, September.
- Schmidt, L.C. and Gregg, B.M. (1980), "A method for space truss analysis in the post-buckling range",International Journal for Numerical in Engineering, 15, 237-247. https://doi.org/10.1002/nme.1620150207
- Ueki, T., Mukaiyama, Y., Shomura, M. and Kato, S. (1991), "Loading test and elasto-plastic buckling analysis ofa single layer latticed dome (in Japanese)", Transactions of AIJ, 117-128, Mar.
Cited by
- Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading vol.2016, 2016, https://doi.org/10.1155/2016/2941874
- Static stability behavior of aluminum alloy single-layer spherical latticed shell structure with Temcor joints vol.120, 2017, https://doi.org/10.1016/j.tws.2017.09.019
- Structural behavior of aluminum reticulated shell structures considering semi-rigid and skin effect vol.54, pp.1, 2015, https://doi.org/10.12989/sem.2015.54.1.121
- Development and realization of seismic retrofit for existing buildings using aluminum alloy materials vol.60, pp.2, 2010, https://doi.org/10.2464/jilm.60.93
- Experimental investigation on the semi-rigid behaviour of aluminium alloy gusset joints vol.87, 2015, https://doi.org/10.1016/j.tws.2014.11.001
- DAMAGE CONTROL USING FUSE CONNECTION IN DOUBLE LAYER LATTICED WALL BASED ON ELASTO-PLASTIC BEHAVIOR vol.78, pp.683, 2000, https://doi.org/10.3130/aijs.78.233
- Probabilistic seismic vulnerability assessment of aluminium alloy reticulated shells with consideration of uncertainty vol.195, pp.None, 2019, https://doi.org/10.1016/j.engstruct.2019.05.093
- Finite Element Failure Analysis of GFRP Laminates in Plate-Cone Reticulated Shell vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/2809302