• Title/Summary/Keyword: Greenhouse gas (GHG) emissions

Search Result 272, Processing Time 0.026 seconds

Construction of Greenhouse Gas Inventory of Private Industry of Chungcheongbuk-do and Analysis of Greenhouse Gas Mitigation Technology (충청북도 민간 산업체에 대한 온실가스 인벤토리 구축 및 감축기술 분석)

  • Lim, Soo Min;Ahn, Joo Young;Jung, Cho Shi;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • Greenhouse gas (GHG) emissions of private industry of Chungcheongbuk-do were estimated. GHG emissions were classified by industry and GHG emissions ratio of each industry of Chungcheongbuk-do was found. Characteristics of GHG emissions of Chungcheongbuk-do and GHG mitigation technology were analyzed. To calculate GHG emissions, equations proposed through GHG emissions calculation guidelines published by Korean Energy Agency in 2009 were used. As a result, GHG emissions ratio of cement, semiconductor, paper and petrochemical industry was about 73%, 16%, 5%, and 2% respectively. GHG mitigation technologies of cement, semiconductor and waste were investigated. For cement, amine technology, for semiconductor, scrubber system and for waste, land fill gas utilization were analyzed.

An Establishment of Greenhouse Gas Information System using Excel Spreadsheets (엑셀 스프레드시트를 활용한 온실가스 정보시스템 구축)

  • Lee, Hae-Jung;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.129-136
    • /
    • 2017
  • Climate change is the biggest environmental issue of our times. A variety of activities to reduce greenhouse gas emissions have been in progress to observe the Kyoto Protocol. Especially, the Energy Target Scheme is created to reduce greenhouse emission with the supervision of Korean government. This includes Green-house Gas Information Systems to promote activities in the private sector to reduce green-house gas emissions, to cut a cost of energy use, and to reduce GHG emissions. Also, the system has calculated the amount of greenhouse gases. Without any additional investment, 2.75% savings are increased over the previous year. In service sector, a cooperation of customers and employees is necessary. A reduction of GHG emissions requires a proper service organization, considering an amount of investment and payback period. Without any additional investment or replacement, employees can save energy easily turning off ventilation systems an hour before employees' departure, installing timers to turn off water purifiers and vending machines after some period of no use. The Green-house Gas Information System is similar to that of Environmental Management System. However, the Excel is the best program to calculate an amount of green-house gas emissions, and to assess for a reduced amount of GHG emissions. A goal of this research is to propose a practical method in the private sector to calculate an amount of green-house gases. The Green-house gas Information System based on Excel spreadsheet gives standards for good evaluation. The greenhouse gas information system establishes and executes the policies and objectives related to greenhouse gas emissions Similar to ISO 14001 environment management system structures, the advantages of using simplified Excel Sheet for calculating GHG emissions and reducing GHG emissions are easy to access.

The Domestic Response Strategies for the Mutual Recognition Arrangement System to Greenhouse Gas (온실가스 국제상호인정 체계에 관한 국내대응방안)

  • Lee, Hae-Jung;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.83-91
    • /
    • 2017
  • Climate change has been identified as one with the greatest challenges facing nations, government, business and over future decades. Activities to reduce greenhouse gas emissions by the Kyoto Protocol, the international community has been in progress. Korea also has introduced the Emission trading system to reduce greenhouse emission from the supervision of the government. Greenhouse gases emissions quantity should be internationally recognized. Mutual Recognition Arrangement should be recognized as the same greenhouse gas emission. International recognition of domestic verification body of international mutual recognition is required. Efforts are needed to secure the equivalence between the emission rights through direct cooperation with the relative nation accreditation body. Early entry into the IAF/PAC GHG MLA is essential for demonstrating equivalence between greenhouse gas emissions. Emissions trading will also require connection to the EU ETS, California, USA, and Tokyo, Japan to link Emissions trading. In the case of establishing accreditation standards and accreditation criteria, it will be necessary to distinguish between the domestic Energy Target Management System and the Emission Trading System. Independent greenhouse gases verification bodies should be established to meet the requirements of IAF and PAC. It is necessary to revise the qualification criteria for the verification of the greenhouse gas verification body according to international standards requirements. It is necessary to support the role of accreditation bodies of domestic greenhouse gas verification bodies. It is required to join international organizations of international mutual recognition of international trade and the need for pilot projects to link greenhouse gas emissions. The core link to our emission trading system is called EU-ETS, and we will need to join the IAF/PAC GHG MLA GHG. The International Mutual Recognition Agreement (IAF) is expected to allow international interoperability of GHG emissions verification between EA and the PAC. By signing a PAC GHG MLA, it will need to be prepared to prepare for the pilot project to link the emission trading system.

The Relationship between Korea Agricultural Productions and Greenhouse Gas Emissions Using Environmental Kuznets Curve (환경쿠즈네츠곡선을 이용한 한국의 농업 생산과 온실가스 배출의 관계 분석)

  • Kang, Hyun-Soo
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.1
    • /
    • pp.209-223
    • /
    • 2021
  • Purpose - The purpose of this study was to investigate the relationship between Korea agricultural productions and Greenhouse Gas (GHG) emissions based on Environmental Kuznets Curve (EKC) hypothesis. Design/methodology/approach - This study utilized time series data of economic growth, greenhouse gas, agricultural productions, trade dependency, and energy usages. In order to econometric procedure of EKC hypothesis, this study utilized unit root test and cointegration test to check staionarity of each variable and also adopted Vector Error Correction Model (VECM) and Ordinary Least Square (OLS) to analyze the short and long run relationships. Findings - In the short run, greenhouse gas emissions resulting from economic growth show an inverse U-shape relationship, and an increase in agricultural production and energy consumption led to increase in greenhouse gas emission. In the long run, total GHG emissions and CO2 emissions show an N-shaped relationship with economic growth, and an increase in agricultural production has resulted in a decrease in total GHG and CO2 emissions. However, methane (CH4) and nitrous oxide (N2O) emissions showed an inverse U-shape relationship with economic growth, which indicated the environment and production process of agricultural production. Research implications or Originality - Korea agricultural production has different effects on the GHG emission sources, and in particular, methane (CH4) and nitrous oxide (N2O) emissions show to increase as the agricultural production expansions, so policy or technological development in related sector is required. Especially, in the context of the 2030 GHG reduction road-map, if GHG-related reduction technologies or policies are spread, national GHG emission reduction targets can be achieved and this is possible to predict the decline in production in the sector and damage to the related industries.

A Quantitative Analysis of GHG Emissions from the Korean Offshore Large Scale Fisheries Using an LCA Method (전과정 평가에 의한 한국 근해 대형어업의 온실가스 배출량 분석)

  • Lee, Ji-Hoon;Lee, Chun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • The negative fishery factors from an environmental perspective are greenhouse gas emissions due to high fossil fuel use, destruction of underwater ecosystems by bottom trawls, a reduction in resources by fishing, and damage to ecosystem diversity. In particular, the greenhouse gas emissions from fisheries is an important issue based on the Cancun meeting in Mexico in 1992 and the Kyoto protocol in 2005. However, no investigations on the GHG emissions from Korean fisheries have been conducted. Therefore, a quantitative analysis of GHG emissions from the Korean fishery industry is needed as a first step to identify a method to reduce GHG emissions from fisheries. The purpose of this study was to investigate the degree of GHG emitted from fisheries. Here, we calculated the GHG emissions from four main Korean fisheries(i.e., large trawls, large purse seines, Danish seines, and bottom pair trawls) using the life cycle assessment(LCA) method. The system boundary and input parameters for each process level were defined for LCA analysis. The fuel use coefficient of each fishery was also calculated. The GHG emissions from edible seafood were calculated considering different consuming areas. The results will be helpful to understand GHG emissions from Korean fisheries.

Estimation of greenhouse gas emissions from an underground wastewater treatment plant

  • Kyung, Daeseung;Jung, Da-Yoon;Lim, Seong-Rin
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.173-177
    • /
    • 2020
  • Wastewater treatment plants (WWTPs) have been recognized as one of the significant greenhouse gas (GHG) generators, due to the complex biochemical reaction and huge consumption of energy and materials. Recently, WWTPs have been built underground and they will be confronted with the challenges of mitigating GHG emissions and improving the quality of treated wastewater. Here, we focus on estimating GHG emissions to set up effective management plans for a WWTP built underground. First, we apply the process-based life cycle assessment (LCA) with an inventory database of the underground WWTP for a case study. Then, we identify significant factors affecting GHG emissions during service life using sensitivity analysis and suggest the proper tactics that could properly reduce GHG emissions from the WWTP.

A quantitative analysis of greenhouse gas emissions from the major offshore fisheries (주요 근해어업의 온실가스 배출량 정량적 분석)

  • BAE, Jaehyun;YANG, Yong-Su;KIM, Hyun-Young;HWANG, Bo-kyu;LEE, Chun-Woo;PARK, Subong;Lee, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.1
    • /
    • pp.50-61
    • /
    • 2019
  • The concern on the greenhouse gas emissions is increasing globally. Especially, the greenhouse gas emission from fisheries is an important issue from the Paris Climate Change Accord in 2015. Furthermore, the Korean government has a plan to reduce the GHG emissions as 4.8% compared to the BAU in fisheries until 2020. However, the investigation on the GHG emissions from Korean fisheries rarely carried out consistently. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is necessary as a first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from the major offshore fisheries such as offshore gillnet fishery, offshore longline fishery, offshore jigging fishery and anchovy drag net fishery. Here, we calculated the GHG emissions from the fisheries using the Life Cycle Assessment method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel use coefficients of the fisheries are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for the unit weight of fishes are calculated with consideration to the different consuming areas as well. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.

A Quantitative Analysis of Greenhouse Gas Emissions from the Danish Seine Fishery using Life Cycle Assessment (전과정평가 방법에 의한 외끌이 대형기선저인망 어업의 온실 가스 배출량의 정량적 분석)

  • Lee, Jihoon;Lee, Chun-Woo;Kim, Jieun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.200-206
    • /
    • 2015
  • The fishing industry has a negative effect on the environment due to greenhouse gas (GHG) emissions with the high use of fossil fuels, the destruction of underwater ecosystems by bottom trawls, reduction in resources by fishing, and altered ecosystem diversity. GHG emissions from fisheries were discussed at the Canc$\acute{u}$n meeting in Mexico in 1992 and are part of the Kyoto protocol in 2005. However, few studies have investigated the GHG emissions from Korean fisheries. To find a way to reduce GHG emissions from fisheries, quantitative analysis of GHG emissions from the Korean fishery industry is needed. Therefore, this study investigated the GHG emissions from the Korean Danish seine fishery using the life cycle assessment (LCA) method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel-use coefficient of the fishery is also calculated. The GHG emissions from the representative fish caught by the Danish seine fishery are considered and the GHG emissions for the edible weight of fishes are calculated, considering consumption in different areas and different slaughtering processes. The results will help to understand the GHG emissions from Korean fisheries.

Greenhouse Gas Emissions from Building Sector based on National Building Energy Database (국가 건물에너지 통합DB 기반 건물부문 온실가스 배출현황)

  • Ji, Chang-Yoon;Choi, Min-Seok;Gwon, Oh-In;Jung, Ha-Rim;Shin, Sung-Eun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.143-152
    • /
    • 2020
  • This study analyzes in detail greenhouse gas emissions in building sector. To this end, this study used data on building characteristics (including building type, region, and construction year) and monthly energy consumptions (including electricity, city gas, and district heat) for all buildings from 2015 to 2018. These data were collected from the National Building Energy Database and the energy consumptions were converted into greenhouse gas (GHG) emissions. The total amount of GHG emissions from the building sector has increased steadily from 2015 (118.1MtCO2eq.) to 2018 (132.6MtCO2eq.). On the other hand, the more recently constructed buildings had lower GHG intensities. This result shows that strengthening building design criteria was effective on the reduction of GHG emissions in buildings, and that the increased buildings contributed to increasing GHG emissions of the building sector. In addition, sales facilities are thought to have the largest reduction potential as they had the highest amount of GHG emissions and GHG intensity. This study is expected to help establish new policies for GHG reduction in building sector as well as to evaluate the effects of existing policies.

Calculation and Evaluation of Monthly Sectoral GHG Emissions of Seoul through Analysis of Energy Consumption from 1999 Until 2009 (1999~2009 서울시 에너지사용량 분석을 통한 월별·부문별 온실가스 배출량 산정 및 평가)

  • Lee, Joo-Bong;Park, Hyun-Shin;Kim, Dong-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.466-476
    • /
    • 2012
  • This study calculated monthly and sectoral (for industry, energy industry, transport, residential, commercial and public sectors) greenhouse gas (GHG) emissions of Seoul, Korea from 1999 until 2009 with following the IPCC 2006 Guideline for National Greenhouse Gas Inventories through an analysis on available monthly data of fossil fuel and electricity consumption for the period. The time series analysis showed that GHG emissions had significant cyclical pattern season by season with the highest peak in August and the lowest peak in January throughout the period. The analysis on monthly and sectoral energy consumption showed that residential, commercial and public sectors had emitted about 65% of total GHG emissions of Seoul and had consumed more energy in winter for heating. About 30% GHG of Seoul was emitted from transport sector but its monthly energy consumption showed irregular pattern and it consumed 80% petroleum (in 2009) of Seoul. Hopefully together with further study on this subject, it is expected that this study can be used as basic data for various research regarding Greenhouse gas baseline emission, energy consumption pattern and estimation for future GHG emission of Seoul.