• Title/Summary/Keyword: Greenhouse Management

Search Result 656, Processing Time 0.025 seconds

Propagation by In Vitro Zygotic Embryos Cultures of the Quercus myrsinifolia

  • Choi, Eun ji;Yong, Seong Hyeon;Seol, Yu Won;Park, Dong Jin;Park, Kwan Been;Kim, Do Hyun;Jin, Eon Ju;Choi, Myung Suk
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.323-330
    • /
    • 2021
  • Zygotic embryo culture was performed to propagate evergreen oak, Quercus myrsinifolia, which has recalcitrant seeds and is difficult to propagate by cuttings. Zygotic embryos appeared in WPM medium after 14 days, and after 56 days, they developed into complete plants with cotyledons and roots. The medium suitable for zygotic embryo culture was 1/4 WPM medium, showing a shoot growth of 2.43 cm and root growth of 8.7 cm after 8 weeks of culture. As a result of investigating the effect of GA3 on the growth of plants germinated from zygotic embryos through GA3 treatment, the best growth was shown in 0.5 mg/l GA3 treatment. The in vitro rooting and growth of IBA-treated zygotic embryo-derived plants were good in the 0.5 mg/l IBA treatment and rooting and shoot growth were not observed at higher concentrations. And the callus induction rate also increased as the concentration of IBA increased. Plants grown in vitro were transferred to a plastic pot containing artificial soil and acclimatized in a greenhouse for about 4 weeks, resulting in more than 90% survival. As a result of this study, the zygotic embryo culture method was confirmed to be effective for mass propagation of Q. myrsinifolia. The results of this study are expected to contribute significantly to the mass propagation of elite Q. myrsinifolia.

Comparative study of individual and co-application of biochar and wood vinegar on growth of perilla (Perilla frutescens var.) and soil quality

  • Yun-Gu Kang;Nam-Ho Kim;Jun-Ho Kim;Da-Hee Ko;Jae-Han Lee;Jin-Hyuk Chun;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.357-366
    • /
    • 2022
  • Biochar can be obtained by using various types of biomass under an oxygen-limited condition. Biochar can be utilized for various applications such as soil improvement, waste management, growth promotion, and adsorption. Wood vinegar is produced by the process of pyrolysis wood biomass and is used as a growth promoter, for soil improvement, and as a feed additive. When wood vinegar is treated on soil, it acts to control soil pH, improve nutrient availability, and alleviate N2O and NH3 volatilization. The objective of this study was to evaluate the effect of biochar and wood vinegar on the growth of perilla and soil quality. The experiment was conducted by using a Wagner pot (1·5,000 a-1) in a glass greenhouse. The biochar was produced by pyrolysis at 450℃ for 30 minutes using rice husk and rice straw. Wood vinegar was diluted to 1 : 500 (v·v-1) and used in this experiement. In the results of a cultivation experiment, co-application of biochar and wood vinegar enhanced the growth of perilla. In particular, rice husk biochar affected the leaves of the perilla, and rice straw biochar influenced the stems of the perilla. In addition, soil quality after treatment with biochar and wood vinegar applied together was highest compared to other units. Therefore, it is anticipated that co-application of biochar and wood vinegar will be more productive and improve soil quality compared to individual utilization of biochar and wood vinegar.

Demonstration of Low-carbon Pre-oxidation Technology for Algae Using Sodium Permanganate (과망간산나트륨을 활용한 조류 대응 저탄소 전산화기술 실증화 연구)

  • Junsoo, Ha;Daniel Sangdu, Hur;Chaieon, Im;Donghee, Jung;Youngseong, Lim;Jinkyong, Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • This paper is a result of research conducted on the 800,000 m3/d capacity of A Water Treatment Plant (WTP) and 400,000 m3/d capacity of B WTP plant in operation in the Nakdong River region. We evaluated the effect of algae broom on the WTP operation based on the running data of both WTP and the data on the pre-oxidation process field test for algae control using sodium permanganate (SPM) at the B WTP. The study results showed that during the algal bloom period, the coagulant dose increased by 102% in A WTP and 58% in B WTP, respectively, and the chlorine dose also increased by 38% and 29%, respectively, which may affect Total trihalomethane (THM) production. Data such as algal populations and Chl-a, residual chlorine and THM, algal populations, and ozone dose appeared also highly correlated, confirming that algal broom affects WTP operations, including water quality and chemical dosage. As a result of the field test of B WTP, THMs appeared lower than that of the control, suggesting the possibility of the SPM pre-oxidation process as an alternative to algae-related water quality management. Furthermore, in terms of GHG emissions due to energy consumption, it was observed that the pre-oxidation process using SPM was approximately 10.8%, which is a very low ratio compared to the pre-ozonation process. Therefore, these results suggest that the SPM pre-oxidation process can be recommended as an alternative to low-carbon water purification technology.

Estimation of Domestic Aircraft Fuel Consumption and Improved Accuracy (국내선 항공기 연료소모량 추정및 정확도 향상)

  • HyeJin Hong;JiHun Choi;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.649-657
    • /
    • 2023
  • ICAO adopted the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) at the 39th General Assembly in 2016, and 115 countries, including South Korea, expressed their intention to participate in CORSIA as of January 1, 2023. Since carbon generated in the aviation industry is mainly caused by greenhouse gases emitted from aircraft engines, fuel consumption must be reduced to reduce carbon emissions. Prior research, such as simulation, is essential to predict the effectiveness of each plan and to make decisions about its implementation. High-quality data is needed to derive accurate results, but it has been difficult to secure actual fuel consumption data, as they are considered to be classified airline data. Therefore, in this paper, after establishing a model that estimates fuel consumption based on actual fuel consumption data, the model is to be advanced to improve its accuracy.

Analysis of Variables Effects in 300mm PECVD Chamber Cleaning Process Using NF3

  • Sang-Min Lee;Hee-Chan Lee;Soon-Oh Kwon;Hyo-Jong Song
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.114-122
    • /
    • 2024
  • NF3, Chamber cleaning gas, has a high Global Warming Potential (GWP) of 17,000, causing significant greenhouse effects. Reducing gas usage during the cleaning process is crucial while increasing the cleaning Rate and reducing cleaning standard deviation (Stdev). In a previous study with a 6-inch PECVD chamber, a multiple linear regression analysis showed that Power and Pressure had no significant effect on the cleaning Rate because of their P-values of 0.42 and 0.68. The weight for Flow is 11.55, and the weights for Power and Pressure are 1.4 and 0.7. Due to the limitations of the research equipment, which differed from those used in actual industrial settings, it was challenging to assess the effects in actual industrial environment. Therefore, to show an actual industrial environment, we conducted the cleaning process on a 12-inch PECVD chamber, which is production-level equipment, and quantitatively analyzed the effects of each variable. Power, Pressure, and NF3 Flow all had P-values close to 0, indicating strong statistical significance. The weight for Flow is 15.68, and the weights for Power and Pressure are 4.45 and 5.24, respectively, showing effects 3 and 7 times greater than those with the 6-inch equipment on the cleaning rate. Additionally, we analyzed the cleaning Stdev and derived that there is a trade-off between increasing the cleaning Rate and reducing the cleaning Stdev.

  • PDF

Climate change messages in the fashion industry discussed at COP28

  • Yeong-Hyeon Choi;Sangyung Lee
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.4
    • /
    • pp.517-546
    • /
    • 2024
  • The aim of this study is to investigate the fashion industry's response to climate change and how these discussions unfolded at the 28th Conference of the Parties (COP28) to the United Nations Framework Convention on Climate Change (UNFCCC). Climate change response projects by B Corp-certified fashion companies are examined, focusing on stakeholder efforts and reviewing online media reports. Text data were collected from web documents, interviews, and op-eds relating to COP28 from December 2018 to April 2024 and analyzed using text mining and semantic network analysis to identify critical keywords and contexts. The analysis revealed that the fashion industry is fulfilling its environmental responsibilities through various strategies, prompting changes in consumer behavior by advocating sustainable consumption, including carbon removal, energy transition, and recycling promotion. Stakeholders in online media and those present at COP28 discussed issues relating to climate change in the fashion industry, focusing on environmental protection, energy, greenhouse gas emissions, sustainable material usage, and social responsibility. Key issues at COP28 included policy and regulation, climate change response, energy transition, carbon emissions management, and environmental, social, and governance (ESG) standards. Additionally, by examining the main collections exhibited at the fashion show during COP28, the study analyzed how messages about climate change were conveyed. Fashion companies communicated the industry's response through exhibitions and fashion shows, suggesting a move toward balancing environmental protection and economic growth through the development of sustainable materials, the expansion of recycling and reuse practices, and the modern reinterpretation of cultural heritage.

Carbon stocks of Humbo Farmer Managed Natural Regeneration forest along altitudinal gradients, Southern Ethiopia

  • Wondimagegn Amanuel;Chala Tadesse;Moges Molla;Musse Tesfaye;Zenebe Mekonnen;Fantaw Yimer
    • Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.382-394
    • /
    • 2024
  • Background: Humbo Farmer Managed Natural Regeneration (FMNR) forest is managed through direct involvement of the local community and funded by the World Vision Australia through World Vision Ethiopia under framework of the Kyoto Protocol's Clean Development Mechanism on greenhouse gas emissions. Understanding the amount and distribution of carbon stored in forests across different elevations will enhance ability to anticipate how forests will react to future climate conditions and carbon levels. The aim of the study was to quantify the amount of carbon stocks along altitudinal gradients in the Humbo FMNR forest in southern Ethiopia. A total of 54 nested sample plots of 20 m × 20 m were established on transects of elevation gradients. Inventories of woody species and soil samples (0-10 cm and 10-20 cm depth) were collected within each nested sample plot. Carbon stocks in woody biomass and soil were compared by three elevation classes. Results: The total carbon stocks significantly (p < 0.05) differed among the three altitudinal gradients. There is no significant difference in biomass carbon stocks between the middle (1,610-1,750 m above sea level [a.s.l.]) and lower (1,470-1,610 m a.s.l.) elevations. However, both of these elevations significantly differ (p < 0.05) from the higher (1,750-1,890 m a.s.l.) elevation, despite an increase in carbon stocks from lower to higher elevations. The highest ecosystem carbon stock was contributed by soil carbon. The higher proportion of C stocks at the higher elevations may be associated to the species composition and dominance with larger wood density. Conclusions: It was concluded that even though soil carbon contributed higher carbon to the total carbon stock, biomass is stronger impact than soil carbon when it comes to carbon stock variation by altitudinal gradients. We recommend that carbon-related awareness creation on reducing emission for the local people and promotion of knowledge on carbon stock credits accounting and to be claimed in future for financing, which could be considered as additional possible option for sustainable forest management.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

An analysis on CO2 emission of structural steel materials by strength using Input-Output LCA (산업연관분석법을 이용한 강도에 따른 구조용 강재의 이산화탄소 배출량 데이터 구축)

  • Hong, Tae-Hoon;Ji, Chang-Yoon;Jang, Min-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.132-140
    • /
    • 2012
  • Along with the increasing interest in environmental problems such as global warming, the South Korean government has established policies and regulations to reduce the amount of greenhouse gases, targeting a 30% reduction of $CO_2$ compared to business-as-usual levels by 2020. Thus, there have been many studies in construction field to control and reduce the amount of $CO_2$ emitted from buildings. $CO_2$ emission from the building construction could be obtained by using the life cycle assessment(LCA) methodology. In LCA, it is essential to have life cycle inventory(LCI) data of construction materials consisting of $CO_2$ emission data that have been defined and examined in a detailed way in order to obtain more accurate and detailed $CO_2$ emission of buildings. To date, however, the LCI data have been acquired only for the representative materials. Accordingly this study aimed to propose detailed $CO_2$ emission data for steel rebar and H-beam, which are the essential structural steel materials, by strength and type. To accomplish the objective, this study used Input-Output LCA methodology which is based on the Input-Output table. It is believed that the $CO_2$ emission data of steel materials acquired from this study would allow a more accurate assessment of $CO_2$ emission for diverse structural design alternatives.

A Study on the Non-residential Building Envelope Remodeling for Energy Efficiency (비주거용 건물의 외피 리모델링을 통한 에너지성능향상 방안에 관한 연구)

  • Jang, Hyun-Sook;Lee, Sang-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.6
    • /
    • pp.3-12
    • /
    • 2012
  • The slowdown of private building industry resulted in growth of remodeling market as a way to improve energy performance. Remodeling is considered more cost-effective and eco-friendly approach for energy efficient building than new construction. Since 2008, Seoul has promoted Building Retrofit Project (BRP) preponderantly to attract energy-saving renovation by supporting building owners to switch building system into energy-saving system when they remodel their old buildings. According to 2012 press release, 254 Private sectors participated in this green building project and annually reduced 41000ton of greenhouse gas emission, 14000TOE, which also result in 7.5 billion won energy cost savings per year. The paper focuses on the building envelope remodeling as a way to improve energy efficiency. Different components of the building envelope such as wall insulation, window, and shading, were applied to the baseline model and the comparison was analyzed to come up with the ideal solution. This study only assesses the building envelope as to suggest the way to redesign the better energy performing building. Offering solution focusing on the architectural feature is essential because it will provide basic information and standard when remodeling a building for energy efficiency, especially, for the nonresidential buildings used as rental offices.