• Title/Summary/Keyword: Gradient of Electrode

Search Result 53, Processing Time 0.032 seconds

Electrochemical Performance of Ti-Si Alloy Anode using Nodule Type Current Collector

  • Shin, Min-Seon;Park, Jung-Bae;Lee, Sung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.61-66
    • /
    • 2017
  • The cycle performance of Ti-Si alloy anode material for Li-ion batteries has been investigated as a function of loading level of electrode using a nodule type of substrate, in which the current collector of flat foil is also used for comparison. The Ti-Si alloy powders are prepared by mechanical alloying method. The electrodes with the nodule type of current collector exhibit enhanced cycling performance compared to those using the flat foil because the alloy particles are more strongly adhered to substrate and the stress caused by lithiation and delithiation reaction can be effectively relaxed by nodule-type morphology. It appears, however, that the cycle performance is critically dependent on the loading level of electrode, even when the nodule type of current collector is applied. With high loading level, cracks are initiated at surface of electrode due to a steep stress gradient through the electrode thickness during cycling, leading to capacity fading.

Fabrication of a Micro Actuator with p$^+$ Si Cantilevers for Optical Devices (p$^+$ Si 외팔보 구조를 이용한 광학 소자용 마이크로 구동기의 제작)

  • Park, Tae-Gyu;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.249-252
    • /
    • 2001
  • The paper represents the design and fabrication of an electrostatic micro actuator with $p^+$,/TEX> Si cantilevers. The micro actuator consists of a plate suspended by four $p^+$,/TEX> silicon cantilevers and an electrode on a glass substrate. The $p^+$,/TEX> Si structure is fabricated by the boron diffusion process and the anisotropic wet etch process. The cantilevers of the micro actuator curl down because of the residual stress gradient in $p^+$,/TEX> silicon. When the electrostatic forec is applied to the $p^+$,/TEX> cantilevers, the vertical displacement of the plate can be achieved. The deflection of the cantilever due to the residual stress gradient and the vertical displacement by electrostatic force were calculated. The displacement of the plate was measured with a laser displacement meter for various input voltages and frequencies. The feasibility of the proposed micro actuator for the applications to optical pickup devices or optical communication devices was confirmed by the experiments.

  • PDF

Characterization of Microbial Fuel Cells Enriched Using Cr(VI)-Containing Sludge

  • Ryu, Eun-Yeon;Kim, Mi-A;Lee, Sang-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • Microbial fuel cells (MFCs) were successfully enriched using sludge contaminated with Cr(VI) and their characteristics were investigated. After enrichment, the charge of the final 10 peaks was 0.51 C ${\pm}$ 1.16%, and the anodic electrode was found to be covered with a biofilm. The enriched MFCs removed 93% of 5 mg/l Cr(VI) and 61% of 25 mg/l Cr(VI). 16S rDNA DGGE profiles from the anodic electrode indicated that ${\beta}$-Proteobacteria, Actinobacteria, and Acinetobacter sp. dominated. This study is the first to report that electrochemically active and Cr(VI)-reducing bacteria could be enriched in the anode compartment of MFCs using Cr(VI)-containing sludge and demonstrates the Cr(VI) removal capability of such MFCs.

The Analysis of Structure Grounding Using Reduced Scale Model (축소모델을 이용한 구조체 접지 분석)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Han, Woon-Ki;Lee, Ki-Yeon;Choi, Chung-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2046-2048
    • /
    • 2005
  • This paper deals with ground potential rise of structure grounding electrode when a test current flows through grounding electrode. In order to analyze the potential gradient of ground surface on structure grounding electrode, the reduced scale model has been used. The structures were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. The supporter was made to put up with weight of structure and could move into vertical, horizontal, rotary direction. When a test current flowed through structure grounding electrodes, ground potential rise was the lowest value at electric cage type(type B). According to resistivity and absorption percentage in concrete attached to structure, the potential distribution of ground surface appeared differently.

  • PDF

An experimental study for boiling heat transfer enhancement under electric fields (전기장하에서의 비등 열전달 촉진에 관한 실험적 연구)

  • O, Si-Deok;Gwak, Ho-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2298-2314
    • /
    • 1996
  • Electric field effect on boiling of refrigerants R11, R113, and FC72 has been investigated experimentally. One purpose of the experimental investigation is to determine the effects of the electrode arrangements on electrohydrodynamic boiling of the above mentioned liquids. The test equipment employed in the experiment consists of a shell and tube heat exchanger with six or six and twelve rows of electrode wires around the tube. It has been found that the applied voltage promotes the boiling heat transfer coefficient except FC72. Boiling heat transfer enhancement obtained is about 230% for R11, 280% for R113. It has also been observed that bubbles detached from the tube aggregate at the place where the electrical gradient force balances with the buoyancy one. These aggregated bubbles force to decrease the boiling heat transfer coefficient as well as to reduce the voltage needed to the dielectric breakdown.

Accurate Localization of Metal Electrodes Using Magnetic Resonance Imaging (자기공명영상을 이용한 금속전극의 정확한 위치 결정)

  • Joe, Eun-Hae;Ghim, Min-Oh;Ha, Yoon;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • Purpose : Localization using MRI is difficult due to susceptibility induced artifacts caused by metal electrodes. Here we took an advantage of the B0 pattern induced by the metal electrodes by using an oblique-view imaging method. Materials and Methods : Metal electrode models with various diameters and susceptibilities were simulated to understand the aspect of field distortion. We set localization criteria for a turbo spin-echo (TSE) sequence usingconventional ($90^{\circ}$ view) and $45^{\circ}$ oblique-view imaging method through simulation of images with various resolutions and validated the criteria usingphantom images acquired by a 3.0T clinical MRI system. For a gradient-refocused echo (GRE) sequence, which is relatively more sensitive to field inhomogeneity, we used phase images to find the center of electrode. Results : There was least field inhomogeneity along the $45^{\circ}$ line that penetrated the center of the electrode. Therefore, our criteria for the TSE sequence with $45^{\circ}$ oblique-view was coincided regardless of susceptibility. And with $45^{\circ}$ oblique-view angle images, pixel shifts were bidirectional so we can detect the location of electrodes even in low resolution. For the GRE sequence, the $45^{\circ}$ oblique-view anglemethod madethe lines where field polarity changes become coincident to the Cartesian grid so the localization of the center coordinates was more facilitated. Conclusion : We suggested the method for accurate localization of electrode using $45^{\circ}$ oblique-view angle imaging. It is expected to be a novelmethodto monitoring an electrophysiological brain study and brain neurosurgery.

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

Optimal Remediation of TCE-contaminated Groundwater using Direct Current and Fe$^0$ (직류전원과 0가 철을 이용한 지하수내 TCE정화효율의 최적화 연구)

  • Moon, Ji-Won;Moon, Hi-Soo;Roh, Yul;Kim, Heon-Ki;Song, Yun-Goo
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.229-239
    • /
    • 2002
  • The objective of this study was to design an optimal electro-remediation system for TCE contaminated water using zero talent iron (ZVI) and direct current (DC). A series of column experiments were conducted to evaluate the effects of electrode arrangement and the location of permeable iron barrier in the column on the TCE removal efficiency and iron corrosion process. In twelve different combinations of ZVI and/or DC application in the test columns, the rate of reductive degradation of TCE was improved with simultaneous application of both ZVI and DC compared to that used ZVI only. The moot effective arrangement of electrode and ZVI for TCE removal from water was a column set with ZVI and cathode installed at the down gradient, respectively.

Effective Approaches to Preventing Dendrite Growth in Lithium Metal Anodes: A Review

  • Jaeyun Ha;Jinhee Lee;Yong-Tae Kim;Jinsub Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.365-382
    • /
    • 2023
  • A lithium metal anode with high energy density has the potential to revolutionize the field of energy storage systems (ESS) and electric vehicles (EVs) that utilize rechargeable lithium-based batteries. However, the formation of lithium dendrites during cycling reduces the performance of the battery while posing a significant safety risk. In this review, we discuss various strategies for achieving dendrite-free lithium metal anodes, including electrode surface modification, the use of electrolyte additives, and the implementation of protective layers. We analyze the advantages and limitations of each strategy, and provide a critical evaluation of the current state of the art. We also highlight the challenges and opportunities for further research and development in this field. This review aims to provide a comprehensive overview of the different approaches to achieving dendrite-free lithium metal anodes, and to guide future research toward the development of safer and more efficient lithium metal anodes.