Optimal Remediation of TCE-contaminated Groundwater using Direct Current and Fe$^0$

직류전원과 0가 철을 이용한 지하수내 TCE정화효율의 최적화 연구

  • Moon, Ji-Won (Department of Earth System Sciences, Yonsei University) ;
  • Moon, Hi-Soo (Department of Earth System Sciences, Yonsei University) ;
  • Roh, Yul (Environmental Sciences Division, Oak Ridge National Laboratory) ;
  • Kim, Heon-Ki (Department of Environmental System Engineering, Hallym University) ;
  • Song, Yun-Goo (Department of Earth System Sciences, Yonsei University)
  • 문지원 (연세대학교 지구시스템과학과) ;
  • 문희수 (연세대학교 지구시스템과학과) ;
  • 노열 (오크릿지국립연구소) ;
  • 김헌기 (한림대학교 환경시스템공학과) ;
  • 송윤구 (연세대학교 지구시스템과학과)
  • Published : 2002.06.01

Abstract

The objective of this study was to design an optimal electro-remediation system for TCE contaminated water using zero talent iron (ZVI) and direct current (DC). A series of column experiments were conducted to evaluate the effects of electrode arrangement and the location of permeable iron barrier in the column on the TCE removal efficiency and iron corrosion process. In twelve different combinations of ZVI and/or DC application in the test columns, the rate of reductive degradation of TCE was improved with simultaneous application of both ZVI and DC compared to that used ZVI only. The moot effective arrangement of electrode and ZVI for TCE removal from water was a column set with ZVI and cathode installed at the down gradient, respectively.

본 연구는 직류전원(DC)과 zero valent iron(ZVI)을 이용한 실험실 규모의 투수성 반응벽의 모사를 통하여 야외규모의 반응벽 설치시 반응벽과 전원의 설치 위치에 따른 trichloroethylene(TCE)의 처리시 효율성과 반응벽 사용가능 수명을 알아보고자 하였다. 실험결과 12개의 컬럼 type 중 ZVI와 DC를 동시에 사용하는 경우, ZVI만을 사용하는 경우의다. TCE의 환원적 탈염소화는 촉진되었다. 설치된 ZVI충진물질의 양을 고려할 경우, 하류에 ZVI를 설치하고, 전극배열은 상류에 양극을, 하류에 음극을 배열하는 것이 가장 적은 실비로 높은 처리 효율을 나타냄이 밝혀졌다.

Keywords

References

  1. 자원환경지질 v.34 O가 철과 직류전원을 이용한 TCE 오염 지하수의 정화기법 예비조사 문지원;문희수;노열;이석영;송윤구
  2. Environ. Sci. Technol. v.25 Electrolytic model system for reductive dehalogenation in aqueous environments Criddle, C.S.;McCarthy, P.L. https://doi.org/10.1021/es00017a022
  3. Environ. Prog. v.16 Reductive dehalogenation of trichloroethylene using zero-valent iron Gotpagar, J.;Grulke, E.;Tsang, T.;Bhattacharyya, D. https://doi.org/10.1002/ep.3300160221
  4. Corros. Sci. v.36 The influence of sulfate ions on the surface enhanced Raman spectra of passive films formed on iron Gui, J.;Devine, T.M. https://doi.org/10.1016/0010-938X(94)90036-1
  5. Environ. Sci. Technol. v.30 Kinetics of halogenated organic compound degradation by iron metal Johnson, T.J.;Scherer, M.M.;Tratnyek, P.G. https://doi.org/10.1021/es9600901
  6. A field-scale test of trichloroethylene dechlorination using iron filings for the X-120/X749 groundwater plume; ORNL/TM-13217 Liang, L.;West, O. R.;Korte, N. E.;Goodlaxson, J. D.;Pickering, D. A.;Zutman, J. L.;Anderson, F.J.;Welch, C.A.;Pelfrey, M.J.;Dickey, M.J.
  7. Chemosphere v.29 Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds Lipczynska-Kochany, E.;Harms, S.;Milburn, R.;Sprah, G.;Nadarajah, N. https://doi.org/10.1016/0045-6535(94)90279-8
  8. J. Hazard. Mater. v.68 Mineral precipitation and porosity losses in granular iron columns Mackenzie, P.D.;Horney, D.P.;Sivavec. T.M. https://doi.org/10.1016/S0304-3894(99)00029-1
  9. Environ. Sci. Technol. v.28 Reductive dehalogenation of chlorinated methanes by iron metal Matheson, L.J.;Tratnyek, P.G. https://doi.org/10.1021/es00061a012
  10. Cathodic Protection(2nd ed.) Morgan, J.
  11. Environ. Sci. Technol. v.25 Biodeg-radation of mixed-organic wastes by microbial consortia in continuous-recycle expanded-bed bioreactors Phelps, T.J.;Niedzielski, J.J.;Malachowsky, K.J.;Schram, R.M.;Herbes, S.E.;White, D.C. https://doi.org/10.1021/es00020a015
  12. Environ. Sci. Technol. v.34 Performance evaluation of a zerovalent iron reactive barrier: Mineralogical characteristics Philips, D.H.;Gu, B.;Watson, D.B.;Roh, Y.;Liang, L.;Lee, S. Y. https://doi.org/10.1021/es001005z
  13. Atlas of electrochemical equilibria Pourbaix, M.
  14. Environ. Sci. Technol. v.29 Anaerobic corrosion of granular iron: Measurement and interpretation of hydrogen evolution rate Reardon, E.J. https://doi.org/10.1021/es00012a008
  15. Ph.D Thesis Electrochemical remediation of radionuclide and trichloroethene-contaminated groundwater using zero valent iron/iron oxide and mineral characterization of iron hydroxides formed from zero valent iron Roh, Y.
  16. J. Environ. Sci. Heal. A v.35 no.7 Electro-enhanced remediation of trichloroethene-con-taminated groundwater using zero-valent iron Roh, Y.;Lee, S.Y.;Elless, M.P.;Moon, H. S. https://doi.org/10.1080/10934520009377020
  17. Chemosphere v.31 no.6 Catalytic hydrodehalogenation of chlorinated ethylenes using palladium and hydrogen for the treatment of contaminated water Schreier, C.G.;Reinhard, M. https://doi.org/10.1016/0045-6535(95)00200-R
  18. Environ. Sci. Technol. v.33 Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products Su, C.;Puls, R. W. https://doi.org/10.1021/es980481a
  19. Ground Water Monit. Remed. v.17 no.4 Remediating ground water with zero valent metals: Chemical considerations in barrier design Tratnyek, P.G.;Johnson, T.L.;Scherer, M.M.;Eykholt, G.R. https://doi.org/10.1111/j.1745-6592.1997.tb01270.x
  20. Environ. Sci. Technol. v.28 Trans-formationof halogenated aliphatic compouns Vogel, T.M.;Criddle, C.S.;McCarty, P.L.
  21. Environ. Sci. Technol. v.31 Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture Weathers, L.J.;Parkin, G.F.;Alvarez, P.J. https://doi.org/10.1021/es960582d