References
- Ahluwalia, S. S. and D. Goyal. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98: 2243-2257. https://doi.org/10.1016/j.biortech.2005.12.006
- Anderson, D. K., B. J. Condike, and M. D. Piwoni. 1998. 3500-Cr chromium, pp. 3066-3067. In A. E. Greenberg, L. S. Clesceri, and A. D. Eaton (eds.). Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, NW Washington, DC.
- Barnhart, J. 1997. Occurrences, uses, and properties of chromium. Reg. Toxicol. Pharmacol. 26: S3-S7. https://doi.org/10.1006/rtph.1997.1132
- Cervantes, C., J. Campos-Garcia, S. Devars, F. Gutierrez-Corona, H. Loza-Tavera, J. C. Torres-Guzman, and R. Moreno-Sanchez. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25: 335-347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x
- Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177.
- Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232. https://doi.org/10.1038/nbt867
- Costa, M. 2003. Potential hazards of hexavalent chromate in our drinking water. Toxicol. Appl. Pharmacol. 118: 1-5.
- Creager, S. 2007. Solvents and supporting electrolytes, pp. 57-71. In C. G. Zoski (ed.). Handbook of Electrochemistry. Elsevier, Oxford.
- Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
- Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 125-152. https://doi.org/10.1016/S0141-0229(01)00475-6
- Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim. 2003. Practical field application of a novel BOD monitoring system. J. Environ. Monitor. 5: 640-643. https://doi.org/10.1039/b304583h
- Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, NewYork.
- Lowe, K. L., W. Straube, B. Little, and J. Jones-Meehan. 2003. Aerobic and anaerobic reduction of Cr(VI) by Shewanella oneidensis: Effects of cationic metals, sorbing agents and mixed microbial cultures. Acta Biotechnol. 23: 161-178. https://doi.org/10.1002/abio.200390024
- Martins, M., M. L. Faleiro, S. Chaves, R. Tenreiro, E. Santos, and M. C. Costa. 2010. Anaerobic bio-removal of uranium(VI) and chromium(VI): Comparison of microbial community structure. J. Hazard. Mater. 176: 1065-1072. https://doi.org/10.1016/j.jhazmat.2009.11.149
- Min, B., J. R. Kim, S. E. Oh, J. M. Regan, and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39: 4961-4968. https://doi.org/10.1016/j.watres.2005.09.039
- Mohan, D. and C. U. Pittman Jr. 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137: 762-811. https://doi.org/10.1016/j.jhazmat.2006.06.060
- Molokwane, P. E., K. C. Meli, and E. M. Nkhalambayausi-Chirwa. 2008. Chromium(VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res. 42: 4538-4548. https://doi.org/10.1016/j.watres.2008.07.040
- Narayanan, N. V. and M. Ganesan. 2008. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation. J. Hazard. Mater. 161: 575-580.
- Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297-306. https://doi.org/10.1006/anae.2001.0399
- Quintelas, C., E. Sousa, F. Silva, S. Neto, and T. Tavares. 2006. Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium(VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochem. 41: 2087-2091. https://doi.org/10.1016/j.procbio.2006.04.014
- Srivastava, S. and I. S. Thakur. 2007. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18: 637-646. https://doi.org/10.1007/s10532-006-9096-0
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Vieira, R. H. and B. Volesky. 2000. Biosorption: A solution to pollution? Int. Microbiol. 3: 17-24.
- Wang, G., L. Huang, and Y. Zhang. 2008. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotech. Lett. 30: 1959-1966. https://doi.org/10.1007/s10529-008-9792-4
- Zakaria, Z. A., Z. Zakaria, S. Surif, and W. A. Ahmad. 2007. Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus. J. Hazard. Mater. 148: 164-171. https://doi.org/10.1016/j.jhazmat.2007.02.029
Cited by
- DGGE 기법을 이용한 생물활성탄 공정의 부착 박테리아 군집분석 vol.34, pp.8, 2011, https://doi.org/10.4491/ksee.2012.34.8.533
- Methodology Simple and inexpensive DNA extraction protocol for studying the bacterial composition of sludges used in microbial fuel cells vol.12, pp.1, 2011, https://doi.org/10.4238/2013.february.4.2
- 환경·생태학적 기법을 이용한 혼합폐수 처리장의 생물학적 처리공정 내의 미생물 군집 특성 분석 vol.28, pp.2, 2011, https://doi.org/10.7841/ksbbj.2013.28.2.80
- Eco-Affectionate Face of Microbial Fuel Cells vol.44, pp.2, 2011, https://doi.org/10.1080/10643389.2012.710445
- Microbial Community Analysis of a Single Chamber Microbial Fuel Cell Using Potato Wastewater vol.86, pp.4, 2014, https://doi.org/10.2175/106143013x13751480308641
- Microbial fuel cells - Applications for generation of electrical power and beyond vol.42, pp.1, 2011, https://doi.org/10.3109/1040841x.2014.905513
- Microbial fuel cell with high content solid wastes as substrates: a review vol.11, pp.2, 2011, https://doi.org/10.1007/s11783-017-0918-6
- Evaluation of chromium removal efficiency at varying operating conditions of a novel bioelectrochemical system vol.41, pp.10, 2011, https://doi.org/10.1007/s00449-018-1982-4
- A strategy for securing unique microbial resources - focusing on Dokdo islands-derived microbial resources vol.64, pp.1, 2018, https://doi.org/10.1163/22244662-20181024
- Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium vol.11, pp.11, 2019, https://doi.org/10.3390/w11112336
- Outlook on the Role of Microbial Fuel Cells in Remediation of Environmental Pollutants with Electricity Generation vol.10, pp.8, 2011, https://doi.org/10.3390/catal10080819
- Metal removal and recovery using bioelectrochemical technology: The major determinants and opportunities for synchronic wastewater treatment and energy production vol.270, pp.None, 2020, https://doi.org/10.1016/j.jenvman.2020.110826
- Bioremediation of Pollutants and Sustainable Energy Production through Bacterial Activities in Microbial Fuel Cells: An Overview vol.33, pp.2, 2011, https://doi.org/10.14233/ajchem.2021.23081
- Practical increases in power output from soil-based microbial fuel cells under dynamic temperature variations vol.5, pp.3, 2011, https://doi.org/10.1039/d0se01406k
- Removal of Chromium from Electroplating Industry Wastewater Using Bioelectrochemical System: Kinetic Study and Statistical Analysis vol.25, pp.2, 2011, https://doi.org/10.1061/(asce)hz.2153-5515.0000571
- Microbial Electrochemical System: A Sustainable Approach for Mitigation of Toxic Dyes and Heavy Metals from Wastewater vol.25, pp.2, 2021, https://doi.org/10.1061/(asce)hz.2153-5515.0000590