DOI QR코드

DOI QR Code

Characterization of Microbial Fuel Cells Enriched Using Cr(VI)-Containing Sludge

  • Ryu, Eun-Yeon (BIO-IT Fusion Technology Research Institute, Pusan National University) ;
  • Kim, Mi-A (Department of Microbiology, Pusan National University) ;
  • Lee, Sang-Joon (Department of Microbiology, Pusan National University)
  • Received : 2010.08.18
  • Accepted : 2010.11.10
  • Published : 2011.02.28

Abstract

Microbial fuel cells (MFCs) were successfully enriched using sludge contaminated with Cr(VI) and their characteristics were investigated. After enrichment, the charge of the final 10 peaks was 0.51 C ${\pm}$ 1.16%, and the anodic electrode was found to be covered with a biofilm. The enriched MFCs removed 93% of 5 mg/l Cr(VI) and 61% of 25 mg/l Cr(VI). 16S rDNA DGGE profiles from the anodic electrode indicated that ${\beta}$-Proteobacteria, Actinobacteria, and Acinetobacter sp. dominated. This study is the first to report that electrochemically active and Cr(VI)-reducing bacteria could be enriched in the anode compartment of MFCs using Cr(VI)-containing sludge and demonstrates the Cr(VI) removal capability of such MFCs.

Keywords

References

  1. Ahluwalia, S. S. and D. Goyal. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98: 2243-2257. https://doi.org/10.1016/j.biortech.2005.12.006
  2. Anderson, D. K., B. J. Condike, and M. D. Piwoni. 1998. 3500-Cr chromium, pp. 3066-3067. In A. E. Greenberg, L. S. Clesceri, and A. D. Eaton (eds.). Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, NW Washington, DC.
  3. Barnhart, J. 1997. Occurrences, uses, and properties of chromium. Reg. Toxicol. Pharmacol. 26: S3-S7. https://doi.org/10.1006/rtph.1997.1132
  4. Cervantes, C., J. Campos-Garcia, S. Devars, F. Gutierrez-Corona, H. Loza-Tavera, J. C. Torres-Guzman, and R. Moreno-Sanchez. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25: 335-347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x
  5. Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177.
  6. Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232. https://doi.org/10.1038/nbt867
  7. Costa, M. 2003. Potential hazards of hexavalent chromate in our drinking water. Toxicol. Appl. Pharmacol. 118: 1-5.
  8. Creager, S. 2007. Solvents and supporting electrolytes, pp. 57-71. In C. G. Zoski (ed.). Handbook of Electrochemistry. Elsevier, Oxford.
  9. Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
  10. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 125-152. https://doi.org/10.1016/S0141-0229(01)00475-6
  11. Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim. 2003. Practical field application of a novel BOD monitoring system. J. Environ. Monitor. 5: 640-643. https://doi.org/10.1039/b304583h
  12. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, NewYork.
  13. Lowe, K. L., W. Straube, B. Little, and J. Jones-Meehan. 2003. Aerobic and anaerobic reduction of Cr(VI) by Shewanella oneidensis: Effects of cationic metals, sorbing agents and mixed microbial cultures. Acta Biotechnol. 23: 161-178. https://doi.org/10.1002/abio.200390024
  14. Martins, M., M. L. Faleiro, S. Chaves, R. Tenreiro, E. Santos, and M. C. Costa. 2010. Anaerobic bio-removal of uranium(VI) and chromium(VI): Comparison of microbial community structure. J. Hazard. Mater. 176: 1065-1072. https://doi.org/10.1016/j.jhazmat.2009.11.149
  15. Min, B., J. R. Kim, S. E. Oh, J. M. Regan, and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39: 4961-4968. https://doi.org/10.1016/j.watres.2005.09.039
  16. Mohan, D. and C. U. Pittman Jr. 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137: 762-811. https://doi.org/10.1016/j.jhazmat.2006.06.060
  17. Molokwane, P. E., K. C. Meli, and E. M. Nkhalambayausi-Chirwa. 2008. Chromium(VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res. 42: 4538-4548. https://doi.org/10.1016/j.watres.2008.07.040
  18. Narayanan, N. V. and M. Ganesan. 2008. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation. J. Hazard. Mater. 161: 575-580.
  19. Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297-306. https://doi.org/10.1006/anae.2001.0399
  20. Quintelas, C., E. Sousa, F. Silva, S. Neto, and T. Tavares. 2006. Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium(VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochem. 41: 2087-2091. https://doi.org/10.1016/j.procbio.2006.04.014
  21. Srivastava, S. and I. S. Thakur. 2007. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18: 637-646. https://doi.org/10.1007/s10532-006-9096-0
  22. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  23. Vieira, R. H. and B. Volesky. 2000. Biosorption: A solution to pollution? Int. Microbiol. 3: 17-24.
  24. Wang, G., L. Huang, and Y. Zhang. 2008. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotech. Lett. 30: 1959-1966. https://doi.org/10.1007/s10529-008-9792-4
  25. Zakaria, Z. A., Z. Zakaria, S. Surif, and W. A. Ahmad. 2007. Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus. J. Hazard. Mater. 148: 164-171. https://doi.org/10.1016/j.jhazmat.2007.02.029

Cited by

  1. DGGE 기법을 이용한 생물활성탄 공정의 부착 박테리아 군집분석 vol.34, pp.8, 2011, https://doi.org/10.4491/ksee.2012.34.8.533
  2. Methodology Simple and inexpensive DNA extraction protocol for studying the bacterial composition of sludges used in microbial fuel cells vol.12, pp.1, 2011, https://doi.org/10.4238/2013.february.4.2
  3. 환경·생태학적 기법을 이용한 혼합폐수 처리장의 생물학적 처리공정 내의 미생물 군집 특성 분석 vol.28, pp.2, 2011, https://doi.org/10.7841/ksbbj.2013.28.2.80
  4. Eco-Affectionate Face of Microbial Fuel Cells vol.44, pp.2, 2011, https://doi.org/10.1080/10643389.2012.710445
  5. Microbial Community Analysis of a Single Chamber Microbial Fuel Cell Using Potato Wastewater vol.86, pp.4, 2014, https://doi.org/10.2175/106143013x13751480308641
  6. Microbial fuel cells - Applications for generation of electrical power and beyond vol.42, pp.1, 2011, https://doi.org/10.3109/1040841x.2014.905513
  7. Microbial fuel cell with high content solid wastes as substrates: a review vol.11, pp.2, 2011, https://doi.org/10.1007/s11783-017-0918-6
  8. Evaluation of chromium removal efficiency at varying operating conditions of a novel bioelectrochemical system vol.41, pp.10, 2011, https://doi.org/10.1007/s00449-018-1982-4
  9. A strategy for securing unique microbial resources - focusing on Dokdo islands-derived microbial resources vol.64, pp.1, 2018, https://doi.org/10.1163/22244662-20181024
  10. Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium vol.11, pp.11, 2019, https://doi.org/10.3390/w11112336
  11. Outlook on the Role of Microbial Fuel Cells in Remediation of Environmental Pollutants with Electricity Generation vol.10, pp.8, 2011, https://doi.org/10.3390/catal10080819
  12. Metal removal and recovery using bioelectrochemical technology: The major determinants and opportunities for synchronic wastewater treatment and energy production vol.270, pp.None, 2020, https://doi.org/10.1016/j.jenvman.2020.110826
  13. Bioremediation of Pollutants and Sustainable Energy Production through Bacterial Activities in Microbial Fuel Cells: An Overview vol.33, pp.2, 2011, https://doi.org/10.14233/ajchem.2021.23081
  14. Practical increases in power output from soil-based microbial fuel cells under dynamic temperature variations vol.5, pp.3, 2011, https://doi.org/10.1039/d0se01406k
  15. Removal of Chromium from Electroplating Industry Wastewater Using Bioelectrochemical System: Kinetic Study and Statistical Analysis vol.25, pp.2, 2011, https://doi.org/10.1061/(asce)hz.2153-5515.0000571
  16. Microbial Electrochemical System: A Sustainable Approach for Mitigation of Toxic Dyes and Heavy Metals from Wastewater vol.25, pp.2, 2021, https://doi.org/10.1061/(asce)hz.2153-5515.0000590