• Title/Summary/Keyword: Gradient Feature

Search Result 279, Processing Time 1.513 seconds

Freehand Forgery Detection Using Directional Density and Fuzzy Classifier

  • Han, Soowhan;Woo, Youngwoon
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.250-255
    • /
    • 2000
  • This paper is concerning off-line signature verification using a density function which is obtained by convolving the signature image with twelve-directional 5$\times$5 gradient masks and the weighted fuzzy mean classifier. The twelve-directional density function based on Nevatia-Babu template gradient is related to the overall shape of a signature image and thus, utilized as a feature set. The weighted fuzzy mean classifier with the reference feature vectors extracted from only genuine signature samples is evaluated for the verification of freehand forgeries. The experimental results show that the proposed system can classify a signature whether genuine or forged with more than 98% overall accuracy even without any knowledge of vaned freehand forgeries.

  • PDF

Content-based Image Retrieval Using Color Adjacency and Gradient (칼라 인접성과 기울기를 이용한 내용 기반 영상 검색)

  • 김홍염;이호영;김희수;하영호
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.157-160
    • /
    • 2000
  • This paper proposes a color-based image retrieval method using color adjacency and gradient. In proposed method, both the adjacency of different colors and gradient of a color in homogeneous region are considered as features of an image. The gradient, defined as the maximum distance along the direction with largest change of color, is computed for each pixel to determine whether the center color is similar or different to the neighboring colors. Therefore the problems caused by uniform quantization, which is popularly used at most existing retrieval, can be avoided. And furthermore, the storage of the feature is reduced by the proposed binary representation.

  • PDF

Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier (HOG-PCA기반 pRBFNNs 패턴분류기를 이용한 보행자 검출 시스템의 설계 및 구현)

  • Kim, Jin-Yul;Park, Chan-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1064-1073
    • /
    • 2015
  • In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.

An Improved Texture Feature Extraction Method for Recognizing Emphysema in CT Images

  • Peng, Shao-Hu;Nam, Hyun-Do
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.30-41
    • /
    • 2010
  • In this study we propose a new texture feature extraction method based on an estimation of the brightness and structural uniformity of CT images representing the important characteristics for emphysema recognition. The Center-Symmetric Local Binary Pattern (CS-LBP) is first used to combine gray level in order to describe the brightness uniformity characteristics of the CT image. Then the gradient orientation difference is proposed to generate another CS-LBP code combining with gray level to represent the structural uniformity characteristics of the CT image. The usage of the gray level, CS-LBP and gradient orientation differences enables the proposed method to extract rich and distinctive information from the CT images in multiple directions. Experimental results showed that the performance of the proposed method is more stable with respect to sensitivity and specificity when compared with the SGLDM, GLRLM and GLDM. The proposed method outperformed these three conventional methods (SGLDM, GLRLM, and GLDM) 7.85[%], 22.87[%], and 16.67[%] respectively, according to the diagnosis of average accuracy, demonstrated by the Receiver Operating Characteristic (ROC) curves.

Intracranial Hemorrhagic Lesion Feature Extraction System Of Using Wavelet Transform and LMBP (웨이블렛 변환과 LMBP를 이용한 대뇌출혈성 병변 인식 시스템)

  • 정유정;정채영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.625-627
    • /
    • 2002
  • 본 논문에서는 의료영상 인식 기술 중 인식률이 뛰어나고 신뢰성 있는 대뇌출혈성 병변인식 시스템을 구현하기 위하여 신호처리 분야에서 주로 사용되는 Wavelet 변환과 신경망 기법을 이용하고자 한다. 그러나 신경망 기법에서 주로 사용되는 비선형 최적화기법인 Gradient descent BP는 최적화 문제점을 해결하기에는 수렴속도가 느리기 때문에 적합하지 않다. 따라서 본 논문에서는 기존 Gradient descent BP를 보완한 Levenberg-Marquardt Back-Propagation을 대뇌출혈성 병변인식에 적용하여 구현함으로써 총 50개의 패턴 중 45개의 영상이 인식에 성공하였고 전체 평균 인식률은 각각 90%와 87%의 인식률을 보였다.

  • PDF

Pedestrian Recognition using Adaboost Algorithm based on Cascade Method by Curvature and HOG (곡률과 HOG에 의한 연속 방법에 기반한 아다부스트 알고리즘을 이용한 보행자 인식)

  • Lee, Yeung-Hak;Ko, Joo-Young;Suk, Jung-Hee;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.654-662
    • /
    • 2010
  • In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using second-stage cascade method, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: (i) Histogram of Oriented Gradient (HOG) which includes gradient information and differential magnitude; (ii) Curvature-HOG which is based on four different curvature features per pixel. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using both HOG and curvature-HOG. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. For the recognition-failed image, the other feature and strong classification will be used for the second stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method.

A feature-based motion parameter estimation using bi-directional correspondence scheme (쌍방향 대응기법을 이용한 특징점 기반 움직임 계수 추정)

  • 서종열;김경중;임채욱;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2776-2788
    • /
    • 1996
  • A new feature-based motion parameter estimation for arbitrary-shaped regions is proposed. Existing motion parameter estimation algorithms such as gradient-based algorithm require iterations that are very sensitive to initial values and which often converge to a local minimum. In this paper, the motion parameters of an object are obtained by solving a set of linear equations derived by the motion of salient feature points of the object. In order to estimate the displacement of the feature points, a new process called the "bi-directional correspondence scheme" is proposed to ensure the robjstness of correspondence. The proposed correspondence scheme iteratively selects the feature points and their corresponding points until unique one-to-one correspondence is established. Furthermore, initially obtained motion paramerters are refined using an iterative method to give a better performance. The proposed algorithm can be used for motion estimationin object-based image coder, and the experimental resuls show that the proposed method outperforms existing schemes schemes in estimating motion parameters of objects in image sequences.sequences.

  • PDF

A Study on H-CNN Based Pedestrian Detection Using LGP-FL and Hippocampal Structure (LGP-FL과 해마 구조를 이용한 H-CNN 기반 보행자 검출에 대한 연구)

  • Park, Su-Bin;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.75-83
    • /
    • 2018
  • Recently, autonomous vehicles have been actively studied. Pedestrian detection and recognition technology is important in autonomous vehicles. Pedestrian detection using CNN(Convolutional Neural Netwrok), which is mainly used recently, generally shows good performance, but there is a performance degradation depending on the environment of the image. In this paper, we propose a pedestrian detection system applying long-term memory structure of hippocampal neural network based on CNN network with LGP-FL (Local Gradient Pattern-Feature Layer) added. First, change the input image to a size of $227{\times}227$. Then, the feature is extracted through a total of 5 layers of convolution layer. In the process, LGP-FL adds the LGP feature pattern and stores the high-frequency pattern in the long-term memory. In the detection process, it is possible to detect the pedestrian more accurately by detecting using the LGP feature pattern information robust to brightness and color change. A comparison of the existing methods and the proposed method confirmed the increase of detection rate of about 1~4%.

A Study for Individual Identification by Discriminating the Finger Face Image (손가락 면 영상 판별에 의한 개인 식별 연구)

  • Kim, Hee-Sung;Bae, Byung-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.378-391
    • /
    • 2010
  • In this paper, it is tested that an individual is able to be identified with finger face images and the results are presented. Special operators, FFG(Facet Function Gradient) masks by which the gradient of a facet function fit on a gray levels of image patches can be computed are used and a new procedure named F-algorithm is introduced to match the finger face images. The finger face image is divided into the equal subregions and each subregions are divided into equal patches with this algorithm. The FFG masks are used for convolution operation over each patch to produce scalar values. These values from a feature matrix, and the identity of fingers is determined by a norm of the elements of the feature matrices. The distribution of the norms shows conspicuous differences between the pairs of hand images of the same persons and the pairs of the different persons. This is a result to prove the ability of discrimination with the finger face image. An identification rate of 95.0% is obtained as a result of the test in which 500 hand images taken from 100 persons are processed through F-algorithm. It is affirmed that the finger face reveals to be such a good biometrics as other hand parts owing to the ability of discrimination and the identification rate.

Multi-Region based Radial GCN algorithm for Human action Recognition (행동인식을 위한 다중 영역 기반 방사형 GCN 알고리즘)

  • Jang, Han Byul;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.46-57
    • /
    • 2022
  • In this paper, multi-region based Radial Graph Convolutional Network (MRGCN) algorithm which can perform end-to-end action recognition using the optical flow and gradient of input image is described. Because this method does not use information of skeleton that is difficult to acquire and complicated to estimate, it can be used in general CCTV environment in which only video camera is used. The novelty of MRGCN is that it expresses the optical flow and gradient of the input image as directional histograms and then converts it into six feature vectors to reduce the amount of computational load and uses a newly developed radial type network model to hierarchically propagate the deformation and shape change of the human body in spatio-temporal space. Another important feature is that the data input areas are arranged being overlapped each other, so that information is not spatially disconnected among input nodes. As a result of performing MRGCN's action recognition performance evaluation experiment for 30 actions, it was possible to obtain Top-1 accuracy of 84.78%, which is superior to the existing GCN-based action recognition method using skeleton data as an input.