DOI QR코드

DOI QR Code

A Study on H-CNN Based Pedestrian Detection Using LGP-FL and Hippocampal Structure

LGP-FL과 해마 구조를 이용한 H-CNN 기반 보행자 검출에 대한 연구

  • Received : 2018.08.13
  • Accepted : 2018.10.25
  • Published : 2018.12.31

Abstract

Recently, autonomous vehicles have been actively studied. Pedestrian detection and recognition technology is important in autonomous vehicles. Pedestrian detection using CNN(Convolutional Neural Netwrok), which is mainly used recently, generally shows good performance, but there is a performance degradation depending on the environment of the image. In this paper, we propose a pedestrian detection system applying long-term memory structure of hippocampal neural network based on CNN network with LGP-FL (Local Gradient Pattern-Feature Layer) added. First, change the input image to a size of $227{\times}227$. Then, the feature is extracted through a total of 5 layers of convolution layer. In the process, LGP-FL adds the LGP feature pattern and stores the high-frequency pattern in the long-term memory. In the detection process, it is possible to detect the pedestrian more accurately by detecting using the LGP feature pattern information robust to brightness and color change. A comparison of the existing methods and the proposed method confirmed the increase of detection rate of about 1~4%.

최근 자율 주행 자동차에 대한 연구가 활발하다. 자율 주행 자동차는 보행자 검출 및 인식 기술이 중요하다. 최근에 주로 사용되는 CNN(Convolutional Neural Network)을 이용한 보행자 검출은 대체로 좋은 성능을 보이나 영상의 환경에 따른 성능 저하가 있다. 본 논문에서는 LGP-FL(Local Gradient Pattern-Feature Layer)을 추가한 CNN Network를 기반으로 해마 신경망의 장기 기억 구조를 적용한 보행자 검출 시스템을 제안한다. 먼저 입력 이미지를 $227{\times}227$의 크기로 변경한다. 그 후 총 5개 층의 Convolution layer를 거쳐 특징을 추출한다. 그 과정에서 추가되는 LGP-FL에서는 LGP 특징 패턴을 추출하여 출현 빈도수가 높은 패턴을 장기 기억 장치에 저장한다. 이후 검출 과정에서 밝기 및 색상 변화에 강인한 LGP 특징 패턴 정보를 이용해 검출함으로써 보다 정확하게 보행자를 검출할 수 있다. 기존의 방법들과 제안하는 기법의 비교를 통해 약 1~4%의 검출률 증가를 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. P. Viola and M. J. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features", Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 9, Dec. 2001.
  2. T. Ojala, M. Pietikainen, and D. Harwood, "A comparative study of texture measures with classification based on feature distributions", Pattern Recognition, Vol. 29, No. 1, pp. 51-59, Jan. 1996. https://doi.org/10.1016/0031-3203(95)00067-4
  3. Dalal and B. Triggs, "Histograms of oriented gradients for human detection", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886-893, Jun. 2005.
  4. Q. Zhu, M. C. Yeh, K. T. Cheng, and S. Avidan, "Fast human detection using a cascade of histograms of oriented gradients", In Proc. CVPR, Vol. 2, pp. 1491-1498, Jun. 2006.
  5. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification with deep convolutional neural networks", Advances in neural information processing systems, Vol. 1, pp. 1097-1105, Dec. 2012.
  6. Simonyan, Karen and Andrew Zisserman, "Very deep convolutional networks for large-scale image recognition", Published as a conference paper at ICLR 2015, arXiv preprint arXiv:1409.1556, Sep. 2014.
  7. Szegedy, Christian, and et al, "Going deeper with convolutions", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Sep. 2014.
  8. Seok-Gyu Choi and Wenjie Xu, "A Study on Person Re-Identification System using Enhanced RNN", JIIBC, Vol. 17, No. 2, pp. 15-23, Apr. 2017. https://doi.org/10.7236/JIIBC.2017.17.2.15
  9. Bongjin Jun and Daijin Kim, "Robust face detection using local gradient patterns and evidence accumulation", Pattern Recognition, Vol. 45, No. 9, pp. 3304-3316, Sep. 2012. https://doi.org/10.1016/j.patcog.2012.02.031
  10. Kiho Kong and Dae-Seong Kang, "A Study of Face Detection Algorithm Using CNN with Mixed-LGP and Hippocampus Structure", Journal of KIIT, Vol. 16, No. 1, pp. 11-17, Jan. 2018.
  11. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324, Nov. 1998. https://doi.org/10.1109/5.726791
  12. P. Dayan and L. F. Abbott, "Theoretical Neuroscience", MIT press, 2001.
  13. In-kyu Choi, Hyok Song, Sangyong Lee, and Jisang Yoo, "Facial Expression Classification Using Deep Convolutional Neural Network", JBE Vol. 22, No. 2, pp. 162-172, Mar. 2017.
  14. Ki-Ho Kong and Dae-Seong Kang, "A Study of Face Detection Algorithm Using CNN Based on Symmetry-LGP & Uniform-LGP and the Skin Color", Journal of KIIT. Vol. 15, No. 1, pp. 107-113, Jan. 2017.
  15. Vogl, P. Thomas, et al., "Accelerating the convergence of the back-propagation method", Biological cybernetics, Vol. 59, No. 4, pp. 257-263, Sep, 1988. https://doi.org/10.1007/BF00332914

Cited by

  1. CoS: An Emphasized Smooth Non-Monotonic Activation Function Consisting of Sigmoid For Deep Learning vol.19, pp.1, 2018, https://doi.org/10.14801/jkiit.2021.19.1.1