• Title/Summary/Keyword: Glial fibrillary acidic protein(GFAP)

Search Result 78, Processing Time 0.023 seconds

A Neonatal Form of Alexander Disease Presented with Intractable Seizures and Obstructive Hydrocephalus

  • Yoo, Il Han;Hong, Won Gi;Kim, Hunmin;Lim, Byung Chan;Hwang, Hee;Chae, Jong-Hee;Kim, Ki Joong;Hwang, Yong Seung
    • Journal of Genetic Medicine
    • /
    • v.10 no.2
    • /
    • pp.113-116
    • /
    • 2013
  • Alexander disease is a rare degenerative leukodystrophy caused by dominant mutations in glial fibrillary acidic protein (GFAP). The neonatal form of Alexander disease may manifest as frequent and intractable seizures or obstructive hydrocephalus, with rapid progression leading to severe disability or death within two years. We report a case of a 50-day-old male who presented with intractable seizures and obstructive hydrocephalus. His initial magnetic resonance imaging (MRI) suggested a tumor-like lesion in the tectal area causing obstructive hydrocephalus. Despite endoscopic third ventriculostomy and multiple administrations of antiepileptic drugs, the patient experienced intractable seizures with rapid deterioration of his clinical status. After reviewing serial brain MRI scans, Alexander disease was suspected. Subsequently, we confirmed the de novo missense mutation in GFAP (c.1096T>C, Y366H). Although the onset was slightly delayed from the neonatal period (50 days old), we concluded that the overall clinical features were consistent with the neonatal form of Alexander disease. Furthermore, we also suspected that a Y366 residue might be closely linked to the neonatal form of Alexander disease based on a literature review.

Astrogliosis Is a Possible Player in Preventing Delayed Neuronal Death

  • Jeong, Hey-Kyeong;Ji, Kyung-Min;Min, Kyoung-Jin;Choi, Insup;Choi, Dong-Joo;Jou, Ilo;Joe, Eun-Hye
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.345-355
    • /
    • 2014
  • Mitigating secondary delayed neuronal injury has been a therapeutic strategy for minimizing neurological symptoms after several types of brain injury. Interestingly, secondary neuronal loss appeared to be closely related to functional loss and/or death of astrocytes. In the brain damage induced by agonists of two glutamate receptors, N-ethyl-D-aspartic acid (NMDA) and kainic acid (KA), NMDA induced neuronal death within 3 h, but did not increase further thereafter. However, in the KA-injected brain, neuronal death was not obviously detectable even at injection sites at 3 h, but extensively increased to encompass the entire hemisphere at 7 days. Brain inflammation, a possible cause of secondary neuronal damage, showed little differences between the two models. Importantly, however, astrocyte behavior was completely different. In the NMDA-injected cortex, the loss of glial fibrillary acidic protein-expressing ($GFAP^+$) astrocytes was confined to the injection site until 7 days after the injection, and astrocytes around the damage sites showed extensive gliosis and appeared to isolate the damage sites. In contrast, in the KA-injected brain, $GFAP^+$ astrocytes, like neurons, slowly, but progressively, disappeared across the entire hemisphere. Other markers of astrocytes, including $S100{\beta}$, glutamate transporter EAAT2, the potassium channel Kir4.1 and glutamine synthase, showed patterns similar to that of GFAP in both NMDA- and KA-injected cortexes. More importantly, astrocyte disappearance and/or functional loss preceded neuronal death in the KA-injected brain. Taken together, these results suggest that loss of astrocyte support to neurons may be a critical cause of delayed neuronal death in the injured brain.

Demyelination in natural canine distemper encephalomyelitis : An immunohistochemical study of myelin basic protein, myelin associated glycoprotein and glial fibrillary acidic protein in the lesion of demyelination (홍역이환개에서 발생한 수초탈락성 뇌척수염 : 수초탈락부위에서 MBP, MAG 및 GFAP의 면역조직학적 관찰)

  • Shin, Tae-kyun;Kwon, Oh-deog;Lee, Du-sik;Lee, Cha-soo
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.2
    • /
    • pp.295-300
    • /
    • 1993
  • Central nervous system of two dogs with natural canine distemper was investigated histopathologically and immunocytochemically with antisera to MBP, MAG and GFAP. Histopathologically, there were neuronal degeneration and diffuse gliosis in the cerebrum, vacuolar degeneration, hypertrophy of astrocytes and demyelination in cerebellar white matter adjacent to the 4th ventricle and optic tracts showing non-inflammatory demyelinating encephalomyelitis (Summers and Appel, 1987). Immunohistochemically, there was a concurrent disappearance of MBP and MAG in the well developed demyelinating lesion in the cerebellar white matter. At the margin of demyelination, Loss of both MBP and MAG varied on the stage of demyelinating process. GFAP-positive astrocytes were hypertrophied and contained canine distemper virus intranuclear inclusions. GFAP-positive fibers were increased at the early stage of demyelination, and then were not immunoreaeted at the well developed demyelination. Hypertrophic astrocytes with intranuclear inclusions were commonly identified in the interfascular layer without myelin vacuolation and demyelination. This is the first study of primary demyelination and astroglial reactions in natural CDE investigated using immunocytochemistry of two myelin proteins and GFAP. Concurrent loss of MBP and MAG suggest that the myelin sheath is the target in the demyelinating process in CDE.

  • PDF

The Effects of Thalictrum foetidum(TFD) on the Alzheimer's Disease Model (마미련(馬尾連)이 Alzheimer's Disease 병웅(病熊) 모델에 미치는 영향(影響))

  • Bae, Jae-Yong;Lee, Sang-Ryong;Jung, In-Chul
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.1
    • /
    • pp.63-78
    • /
    • 2007
  • Objective : This experiment was designed to investigate the effect of Thalictrum foetidum(TFD) on the Alzheimer's disease. Method : The effects of TFD on amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by amyloid ${\beta}$ $protein(A{\beta})$ and $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA of THP-l cell treated by lipopolysaccharide(LPS), AChE activity of PC-12 cell lysate treated by $A{\beta}$ and behavior of the memory deficit mice induced by scopolamine, and glucose, AChE in serum of the memory deficit mice induced by scopolamine were investigated, respectively. Results : The results were summarized as follows ; 1. TFD suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$. 2. TFD suppressed $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA in THP-l cell treated by LPS 3.. TFD suppressed AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. 4. TFD increased glucose and decreased AChE significantly in the serum of the memory deficit mice induced by scopolamine. 5. TFD group showed significantly inhibitory effect on the scopolamine-induced impairment of learning and memory in the experiment of Morris water maze. Conclusion : According to the above results, it is suggested that TFD might be usefully applied for prevention and treatment of Alzheimer's disease.

  • PDF

The Effects of Rhododendron simsii Planch(RSP) on the Alzheimer's Disease Model (두견화(杜鵑花)가 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響))

  • Jang, Jin-Sil;Lee, Sang-Ryong;Jung, In-Chul
    • Journal of Oriental Neuropsychiatry
    • /
    • v.17 no.2
    • /
    • pp.75-89
    • /
    • 2006
  • Objective : This experiment was designed to investigate the effect of Rhododendron simsii Planch(RSP) on the Alzheimer's disease. Method : The effects of RSP on amyloid precursor proteins(APP), acetylcholinesterase (AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by amyloid ${\beta}$ protein$(A{\beta})$ and $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA of THP-1 cell treated by lipopolysaccharide(LPS), AChE activity of PC-12 cell lysate treated by $A{\beta}$ and behavior of the memory deficit mice induced by scopolamine, and glucose, AChE in serum of the memory deficit mice induced by scopolamine were investigated, respectively. Result : 1. RSP suppressed APP, AChE, GFAP mRNA in PC-12 celt treated by $A{\beta}$. 2. RSP suppressed $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA in THP-1 cell treated by LPS. 3. RSP suppressed AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. 4. RSP increased glucose and decreased AChE significantly in the serum of the memory deficit mice induced by scopolamine. 5. RSP group showed significantly inhibitory effect on the scopolamine-induced impairment of teaming and. memory in the experiment of Morris water maze. Conclusion : According to the above results, it is suggested that RSP might be usefully applied for prevention and treatment of Alzheimer's disease and memory deficit symptom.

  • PDF

Effects of Amomum villosum(AMV) Extract on the Alzheimer's Disease Model (사인(砂仁)이 Alzheimer's Disease 병태 모델에 미치는 영향)

  • Choi Bo-Yun;Jung In-Chul;Lee Sang-Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • This experiment was designed to investigate the effect of Amomum villosum(AMV) on the Alzheimer's disease. The effects of AMV extract on amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell line treated by amyloid $\beta$ protein($A{\beta}$) : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA of THP-1 cell line treated by lipopolysaccharide(LPS) : AChE activity of PC-12 cell lysate treated by $A{\beta}$ : serum glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine : behavior of memory deficit mice induced by scopolamine were investigated, respectively. AMV extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$ : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA in THP-1 cell treated by LPS , AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. AMV extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. AMV extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that AMV extract might be usefully applied for prevention and treatment of Alzheimer's disease.

Expression of Kir2.1 Channels in Astrocytes Under Pathophysiological Conditions

  • Kang, Shin Jung;Cho, Sang-hee;Park, Kyungjoon;Yi, Jihyun;Yoo, Soon Ji;Shin, Ki Soon
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.124-130
    • /
    • 2008
  • Astrocyte ion channels participate in ionic homeostasis in the brain. Inward rectifying potassium channels (Kir channels) in astrocytes have been particularly implicated in $K^+$ homeostasis because of their high open probability at resting potential and their increased conductance at high concentrations of extracellular $K^+$. We examined the expression of the Kir2.1 subunit, one of the Kir channel subunits, in the mouse brain by immunohistochemistry. Kir2.1 channels were widely distributed throughout the brain, with high expression in the olfactory bulb and the cerebellum. Interestingly, they were abundantly expressed in astrocytes of the olfactory bulb, while astrocytes in other brain regions including the hippocampus did not show any detectable expression. However, Kir2.1 channel-expressing cells were dramatically increased in the hippocampus by kainic acid-induced seizure and the cells were glial fibrillary acidic protein (GFAP)-positive, which confirms that astrocytes in the hippocampus express Kir2.1 channels under pathological conditions. Our results imply that Kir2.1 channels in astrocyte may be involved in buffering $K^+$ against accumulated extracellular $K^+$ caused by neuronal hyperexcitability under phathophysiological conditions.

Inhibition of Proliferation and Neurogenesis of Mouse Subventricular Zone Neural Stem Cells by a Mitochondrial Inhibitor Rotenone (미토콘드리아 억제제 rotenone에 의한 쥐의 뇌실 하 영역 신경 줄기 세포의 증식과 신경 세포로의 분화 억제)

  • Park, Ki-Youb;Kim, Man Su
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1397-1405
    • /
    • 2018
  • Mitochondria have multiple functions in cells: providing chemical energy, storing cellular $Ca^{2+}$, generating reactive oxygen species, and regulating apoptosis. Through these functions, mitochondria are also involved in the maintenance, proliferation, and differentiation of stem/progenitor cells. In the brain, the subventricular zone (SVZ) is one of the neurogenic regions that contains neural stem cells (NSCs) throughout a lifetime. However, reports on the role of mitochondria in SVZ NSCs are scarce. Here, we show that rotenone, a complex I inhibitor of mitochondria, inhibits the proliferation and differentiation of SVZ NSCs in different ways. In proliferating NSCs, rotenone decreases mitosis as measured through phosphorylated histone H3 detection; moreover, apoptosis is not induced by rotenone at 50 nM. In differentiating NSCs, rotenone blocks neurogenesis and oligodendrogenesis while glial fibrillary acidic protein-positive astrocytes are not affected. Interestingly, in this study there were more cells in the differentiating NSCs treated with rotenone for 4-6 days than in the vehicle control group which was a different effect from the reduced number of cells in the proliferating NSCs. We examined both apoptosis and mitosis and found that rotenone decreased apoptosis as detected by staining cleaved caspase-3 but did not affect mitosis. Our results suggest that functional mitochondria are necessary in both the proliferation and differentiation of SVZ NSCs. Furthermore, mitochondria might be involved in the mitosis and apoptosis that occur during those processes.

Blue-light Induces the Selective Cell Death of Photoreceptors in Mouse Retina (청색광에 의한 마우스 망막손상에서 선택적 광수용세포의 사멸)

  • Kang, Seo-young;Hong, Ji Eun;Choi, Eun jung;Lyu, Jungmook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2016
  • Purpose: The study was conducted to determine that photoreceptors of mouse having pigment in RPE(retinal pigment epithelium) can be damaged by blue-light and apoptosis of specific cells among photoreceptors are induced by blue-light, and to assist the investigation of AMD(Age-related macular degeneration) mechanisms and development of AMD drugs. Methods: C57Black mice were injured by irradiating $2800{\pm}10lux$ of 463 nm LED for 6 hours after 24 hours dark adaptation and eyes were enucleated 1, 3, 7 days. Damage of retina induced by blue-light was determined by western blotting GFAP(Glial fibrillary acidic protein) expression. In the light-injured retina, cell death of photoreceptors was determined by TUNEL(Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. ERK(Extracellular signal-regulated kinases), JNK, and SRC(sarcoma) expression were assessed by western blotting to determine regulated pathway. Blue light-injured retina were immunostained with antibodies against Opsin and Rhodopsin as markers of photoreceptors to compared the damage cone cells with rod cells. Results: After 1, 3 and 7 days from exposure to blue-light, thickness of retina was more decreased than control, and more decreased at nuclear layer than at outer plexiform layer and GFAP expression was increased day 1 after blue-light injured. While phosphorylated ERK and SRC protein expressions at day 1 were increased after blue-light injured, phosphorylated c-JUN was decreased. Fluorescence intensity analysis showed that markers of cone and rod cells were decreased after blue-light injured and Opsin was more decreased than Rhodopsin. Conclusions: The study suggests possibilities that the blue-light promotes retinal damage and causes apoptotic cell death via ERK and SRC pathway in mouse retina, and blue-light retinal damage is more induced cone cells apoptosis than rod cells directly.

The Effects of Crataegus prinnatiflora BGE. var. major N.E. BR(CPVM) Extract on the the Alzheimer's Disease Model Induced by CT105 (산사육(山査肉)이 CT105로 과도(課導)된 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響))

  • Jung, In-Chul;Lee, Sang-Ryong;Chae, Jong-Gul
    • Journal of Oriental Neuropsychiatry
    • /
    • v.13 no.1
    • /
    • pp.79-115
    • /
    • 2002
  • This research investigates the effect of the Crataegus pinnatifida BGE. var. major N.E. BR(CPVM) on Alzheimer's disease. Specifically, the effects of the DYHT extract on (1) $IL-1{\beta}$, IL-6, amyloid precursor proteins(APP), acetylcholinesterase(AChE), and glial fibrillary acidic protein(GFAP) mRNA of PC-12 cells treated with CTI05; (2) the AChE activity and the APP production of PC-12 cell treated with CT105; (3) the behavior; and (4) expression of $IL-1{\beta}$, $TNF-{\alpha}$, reactive oxygen species(ROS), nitrite oxide(NO); and (5) the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with CT105 were investigated. The results are as follow. 1. The CPVM extract suppressed the expression of $IL-1{\beta}$, IL-6, APP, AChE, and GFAP mRNA in PC-12 cells treated with CT105. 2. The CPVM extract suppressed the AChE activity and the production of APP significantly in PC-12 cells treated with CT105. 3. The CPVM extract group showed a significant inhibitory effect on the memory deficit for the mice with Alzheimer's disease induced by CT105 in the Morris water maze experiment. 4. The CPVM extract suppressed the over-expression of $IL-1{\beta}$, $TNF-{\alpha}$, ROS and NO in the mice with Alzheimer's disease induced by CT105. 5. The CPVM extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by CT105. These results suggest that the CPVM extract may be effective for the prevention and treatment of Alzheimer's disease.

  • PDF