DOI QR코드

DOI QR Code

Blue-light Induces the Selective Cell Death of Photoreceptors in Mouse Retina

청색광에 의한 마우스 망막손상에서 선택적 광수용세포의 사멸

  • Received : 2015.10.24
  • Accepted : 2016.02.29
  • Published : 2016.03.31

Abstract

Purpose: The study was conducted to determine that photoreceptors of mouse having pigment in RPE(retinal pigment epithelium) can be damaged by blue-light and apoptosis of specific cells among photoreceptors are induced by blue-light, and to assist the investigation of AMD(Age-related macular degeneration) mechanisms and development of AMD drugs. Methods: C57Black mice were injured by irradiating $2800{\pm}10lux$ of 463 nm LED for 6 hours after 24 hours dark adaptation and eyes were enucleated 1, 3, 7 days. Damage of retina induced by blue-light was determined by western blotting GFAP(Glial fibrillary acidic protein) expression. In the light-injured retina, cell death of photoreceptors was determined by TUNEL(Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. ERK(Extracellular signal-regulated kinases), JNK, and SRC(sarcoma) expression were assessed by western blotting to determine regulated pathway. Blue light-injured retina were immunostained with antibodies against Opsin and Rhodopsin as markers of photoreceptors to compared the damage cone cells with rod cells. Results: After 1, 3 and 7 days from exposure to blue-light, thickness of retina was more decreased than control, and more decreased at nuclear layer than at outer plexiform layer and GFAP expression was increased day 1 after blue-light injured. While phosphorylated ERK and SRC protein expressions at day 1 were increased after blue-light injured, phosphorylated c-JUN was decreased. Fluorescence intensity analysis showed that markers of cone and rod cells were decreased after blue-light injured and Opsin was more decreased than Rhodopsin. Conclusions: The study suggests possibilities that the blue-light promotes retinal damage and causes apoptotic cell death via ERK and SRC pathway in mouse retina, and blue-light retinal damage is more induced cone cells apoptosis than rod cells directly.

목적: 본 연구는 망막색소상피층에 색소가 존재하는 mouse에서 청색광으로 인해 광수용세포 손상이 일어날 수 있는지 확인하고, 광수용세포 중 특이적 세포에서 세포사멸이 유도되는지 조사하여 청색광에 의해 야기될 수 있는 연령관련 황반변성의 기전 규명과 치료제 개발에 도움이 되고자 진행되었다. 방법: C57black mice를 24시간 암순응 시켜 463 nm의 청색광을 $2800{\pm}10lux$로 조사한 후 1일, 3일, 7일째에 안구를 적출하였다. 청색광의 자극은 GFAP(Glial fibrillary acidic protein)단백질의 발현을 이용하여 확인하였고, 광수용세포의 세포사멸은 TUNEL(Terminal deoxynucleotidyl transferase dUTP nick end labeling)을 사용하여 분석하였다. Western blotting으로 ERK(Extracellular signal-regulated kinases), c-JUN, SRC(Sarcoma) 단백질 발현을 확인하였고, 막대세포와 원뿔세포의 손상 정도를 비교하기 위해 면역염색으로 분석하였다. 결과: 청색광을 조사한 후 1, 3, 7일이 지난 망막은 대조군 보다 전체적으로 두께가 감소하였고, 각 얼기층보다 핵층에서 두께 감소를 확인할 수 있었다. 또한 청색광을 조사한 후 1일 지난 Muller glia에서 GFAP 단백질이 증가하는 것을 확인하였다. TUNEL 염색에서는 청색광을 조사한 후 1일 지난 망막의 광수용세포에서 가장 많은 발현을 보였다. 세포사멸 기전 과정 중 하나임을 확인하기 위해 ERK, c-JUN, SRC 단백질 활성을 확인한 결과 청색광을 조사한 망막에서 phosphorylated ERK는 증가하였고 phosphorylated SRC는 조사 후 1일에서만 증가를 나타내었으며, 반대로 phosphorylated c-JUN은 조사 후 1일에서만 감소하였다. 청색광을 조사한 망막에서 막대세포 발색단인 로돕신과 원뿔세포의 발색단인 옵신이 감소하였으며, 옵신의 감소량은 로돕신의 감소량보다 큰 것을 확인하였다. 결론: 본 연구는 청색광이 망막에 손상자극을 주고, ERK와 SRC 신호전달과 관련하여 광수용세포의 세포사멸을 일으킬 수 있으며 청색광이 광수용세포 중 원뿔세포의 세포사멸을 직접적으로 유도하여 망막 손상을 야기할 수 있다는 가능성을 제시하였다.

Keywords

References

  1. Nakanishiueda T, Majima HJ, Watanabe K, Indo HP, Suenaga S, Hisamitsu T. Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells. Free Radic Res. 2013;47(10):774-780. https://doi.org/10.3109/10715762.2013.829570
  2. Youssef PN, Sheibani N, Albert DM. Retinal light toxicity Eye. 2011;25(1):1-14.
  3. Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep. 2014; 4:5223.
  4. Sung CH, Chuang JZ. The cell biology of vision. J Cell Biol. 2010;190(6):953-963. https://doi.org/10.1083/jcb.201006020
  5. Kim CJ, Choi SW,Yang SJ, Oh SY, Choi EJ. Evaluation of blue-light blocking ratio and luminous transmittance of blue-light blocking lens based on international standard. J Korean Ophthalmic Opt Soc. 2014;19(2):135-143. https://doi.org/10.14479/jkoos.2014.19.2.135
  6. Wu J, Seregard S, Spangberg B, Oskarsson M, Chen E. Blue light induced apoptosis in rat retina. Eye. 1999; 4(1):577-583.
  7. Hunt RWG. The Reproduction of Colour, 6th Ed. Chichester: Wiley. 2004;11-12.
  8. Wyszecki G, Stiles WS. Colour 2nd Ed. New York: Wiley. 1982;1-968.
  9. de Melo J, Miki K, Rattner A, Smallwood P, Zibetti C, Hirokawa K. Injury-independent induction of reactive gliosis in retina by loss of function of the LIM homeodomain transcription factor Lhx2. Proc Natl Acad Sci U S A. 2012;109(12):4657-4662. https://doi.org/10.1073/pnas.1107488109
  10. Reece JB, Urry LA, Cain ML, Wassserman SA, Minorsky PV, Jackson RB. Campbell biology, 9th Ed. San Francisco: Benjamin Cummings, 2011;223-227.
  11. Martnez-Fernndez de la Cmara C, Hernndez-Pinto AM, Olivares-Gonzlez L, Cuevas-Martn C, Snchez-AragM, Hervs D. Adalimumab reduces photoreceptor cell death in a mouse model of retinal degeneration. Sci Rep. 2015; 14(5):11764.

Cited by

  1. The Effect of Blue-light Blocking Ophthalmic Lenses on Legibility and Fatigue during Near work with a Smartpad vol.22, pp.1, 2017, https://doi.org/10.14479/jkoos.2017.22.1.81
  2. Effects of visual fatigue caused by smartphones on balance function in healthy adults vol.29, pp.2, 2017, https://doi.org/10.1589/jpts.29.221
  3. A Study on Methods of Analysis and Evaluation of Blue Light Blocking Tinted Lens using Yellow-tinted Lenses vol.23, pp.1, 2018, https://doi.org/10.14479/jkoos.2018.23.1.57
  4. Design of a Coated Blue-light Blocking Lens and Study of Its Optical Characteristics according to the Blue-light Blocking Rate vol.24, pp.3, 2016, https://doi.org/10.14479/jkoos.2019.24.3.301
  5. Qualitative and Quantitative Analysis of Blue Light Blocking Effect vol.21, pp.4, 2019, https://doi.org/10.17337/jmbi.2019.21.4.565
  6. Fabrication and Characterization of Coated Blue-Light Blocking Lens vol.25, pp.3, 2016, https://doi.org/10.14479/jkoos.2020.25.3.307
  7. 다양한 색상의 착색렌즈와 치과용 팁의 청광차단율 비교의 융합적 연구 vol.12, pp.7, 2021, https://doi.org/10.15207/jkcs.2021.12.7.061
  8. 광중합기용 팁과 시판용 청광 차단 렌즈 및 노란색 착색 렌즈의 청광 투과율 비교 융합 연구 vol.12, pp.7, 2016, https://doi.org/10.15207/jkcs.2021.12.7.125