DOI QR코드

DOI QR Code

Inhibition of Proliferation and Neurogenesis of Mouse Subventricular Zone Neural Stem Cells by a Mitochondrial Inhibitor Rotenone

미토콘드리아 억제제 rotenone에 의한 쥐의 뇌실 하 영역 신경 줄기 세포의 증식과 신경 세포로의 분화 억제

  • 박기엽 (KAIST 부설 한국과학영재학교) ;
  • 김만수 (인제대학교 약학대학)
  • Received : 2018.07.24
  • Accepted : 2018.08.27
  • Published : 2018.12.30

Abstract

Mitochondria have multiple functions in cells: providing chemical energy, storing cellular $Ca^{2+}$, generating reactive oxygen species, and regulating apoptosis. Through these functions, mitochondria are also involved in the maintenance, proliferation, and differentiation of stem/progenitor cells. In the brain, the subventricular zone (SVZ) is one of the neurogenic regions that contains neural stem cells (NSCs) throughout a lifetime. However, reports on the role of mitochondria in SVZ NSCs are scarce. Here, we show that rotenone, a complex I inhibitor of mitochondria, inhibits the proliferation and differentiation of SVZ NSCs in different ways. In proliferating NSCs, rotenone decreases mitosis as measured through phosphorylated histone H3 detection; moreover, apoptosis is not induced by rotenone at 50 nM. In differentiating NSCs, rotenone blocks neurogenesis and oligodendrogenesis while glial fibrillary acidic protein-positive astrocytes are not affected. Interestingly, in this study there were more cells in the differentiating NSCs treated with rotenone for 4-6 days than in the vehicle control group which was a different effect from the reduced number of cells in the proliferating NSCs. We examined both apoptosis and mitosis and found that rotenone decreased apoptosis as detected by staining cleaved caspase-3 but did not affect mitosis. Our results suggest that functional mitochondria are necessary in both the proliferation and differentiation of SVZ NSCs. Furthermore, mitochondria might be involved in the mitosis and apoptosis that occur during those processes.

미토콘드리아는 세포안에서 에너지 공급, 칼슘 이온 저장, 활성산소 생성, 세포 자살과 같은 다양한 기능을 수행한다. 이러한 기능을 통해, 미토콘드리아는 줄기세포의 유지, 증식, 그리고 분화에 관여한다. 뇌에서 뇌실 하 영역(subventricular zone, SVZ)에는 일평생 새로운 신경세포를 생성하는 신경줄기세포(neural stem cell, NSC)가 존재한다. 하지만, SVZ NSCs에서 미토콘드리아의 역할에 대한 연구는 많이 알려져 있지 않다. 이번 연구에서 우리는 미토콘드리아의 complex I 저해제인 rotenone이 SVZ NSCs의 증식과 분화를 다른 방식으로 방해한다는 것을 보여주었다. 증식 중인 신경줄기세포에서, rotenone은 세포분열을 감소시켰는데, 이때 세포분열은 히스톤 H3에 인산기가 붙어있는 지를 측정하여 확인하였다. Rotenone을 50 nM 농도로 증식 중인 신경줄기세포에 처리했을 때, 세포사멸은 발생하지 않았다. 한편, 분화 중인 신경줄기세포에 rotenone을 처리한 경우, 신경세포와 희소 돌기아교 세포(oligodendrocyte)으로의 분화가 억제되었고, glial fibrillary acidic protein (GFAP)를 발현하는 성상세포(astrocyte)에는 영향이 없었다. 흥미롭게도, 4-6일 동안의 분화 과정 동안 rotenone이 처리된 신경줄기세포에서 대조군 보다 더 많은 세포 수가 관찰 되었는데, 이는 증식 과정 중의 rotenone의 효과와 다른 것이다. 이에, 우리는 rotenone이 세포 자살은 감소시켰으나, 세포 분열에는 영향을 끼치지 않았음을 관찰하였다. 세포 자살의 경우는 cleaved caspase-3를 측정함으로써 확인하였다. 이러한 결과들은 SVZ 신경줄기세포의 증식과 분화 모두에 제대로 작동하는 미토콘드리아가 있어야 함을 제안하고 있다. 게다가, 이러한 과정에서 미토콘드리아는 세포 분열과 세포자살에 관여할 수도 있을 것이다.

Keywords

SMGHBM_2018_v28n12_1397_f0001.png 이미지

Fig. 1. Effect of rotenone on cell proliferation.

SMGHBM_2018_v28n12_1397_f0002.png 이미지

Fig. 2. Effect of rotenone on neurogenesis.

SMGHBM_2018_v28n12_1397_f0003.png 이미지

Fig. 3. Effects of rotenone on glial differentiation of SVZ NSCs.

SMGHBM_2018_v28n12_1397_f0004.png 이미지

Fig. 4. Effect of rotenone on differentiation of SVZ NSCs.

SMGHBM_2018_v28n12_1397_f0005.png 이미지

Fig. 5. Effect of rotenone on mitosis during neuronal differentiation.

SMGHBM_2018_v28n12_1397_f0006.png 이미지

Fig. 6. Effect of rotenone on activation of caspase-3 during neuronal differentiation.

References

  1. Armada-Moreira, A., Ribeiro, F. F., Sebastiao, A. M. and Xapelli, S. 2015. Neuroinflammatory modulators of oligodendrogenesis. Neuroimmunol. Neuroinflamm. 2, 263-273. https://doi.org/10.4103/2347-8659.167311
  2. Armstrong, J. S., Hornung, B., Lecane, P., Jones, D. P. and Knox, S. J. 2001. Rotenone-induced g2/m cell cycle arrest and apoptosis in a human b lymphoma cell line pw. Biochem. Biophys. Res. Commun. 289, 973-978. https://doi.org/10.1006/bbrc.2001.6054
  3. Beckervordersandforth, R., Ebert, B., Schaffner, I., Moss, J., Fiebig, C., Shin, J., Moore, D. L., Ghosh, L., Trinchero, M. F., Stockburger, C., Friedland, K., Steib, K., von Wittgenstein, J., Keiner, S., Redecker, C., Holter, S. M., Xiang, W., Wurst, W., Jagasia, R., Schinder, A. F., Ming, G. L., Toni, N., Jessberger, S., Song, H. and Lie, D. C. 2017. Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93, 560-573 e566. https://doi.org/10.1016/j.neuron.2016.12.017
  4. Choi, W. S., Kruse, S. E., Palmiter, R. D. and Xia, Z. 2008. Mitochondrial complex i inhibition is not required for dopaminergic neuron death induced by rotenone, mpp+, or paraquat. Proc. Natl. Acad. Sci. USA. 105, 15136-15141. https://doi.org/10.1073/pnas.0807581105
  5. Chung, S., Dzeja, P. P., Faustino, R. S., Perez-Terzic, C., Behfar, A. and Terzic, A. 2007. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4, S60-67. https://doi.org/10.1038/ncpcardio0766
  6. Diaz-Castro, B., Pardal, R., Garcia-Flores, P., Sobrino, V., Duran, R., Piruat, J. I. and Lopez-Barneo, J. 2015. Resistance of glia-like central and peripheral neural stem cells to genetically induced mitochondrial dysfunction--differential effects on neurogenesis. EMBO Rep. 16, 1511-1519. https://doi.org/10.15252/embr.201540982
  7. Esdar, C., Milasta, S., Maelicke, A. and Herget, T. 2001. Differentiation-associated apoptosis of neural stem cells is effected by bcl-2 overexpression: Impact on cell lineage determination. Eur. J. Cell Biol. 80, 539-553. https://doi.org/10.1078/0171-9335-00185
  8. Fang, D., Qing, Y., Yan, S., Chen, D. and Yan, S. S. 2016. Development and dynamic regulation of mitochondrial network in human midbrain dopaminergic neurons differentiated from ipscs. Stem Cell Rep. 7, 678-692. https://doi.org/10.1016/j.stemcr.2016.08.014
  9. Folmes, C. D., Dzeja, P. P., Nelson, T. J. and Terzic, A. 2012. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596-606. https://doi.org/10.1016/j.stem.2012.10.002
  10. Folmes, C. D. and Terzic, A. 2016. Energy metabolism in the acquisition and maintenance of stemness. Semin. Cell Dev. Biol. 52, 68-75. https://doi.org/10.1016/j.semcdb.2016.02.010
  11. Gil-Perotin, S., Marin-Husstege, M., Li, J., Soriano-Navarro, M., Zindy, F., Roussel, M. F., Garcia-Verdugo, J. M. and Casaccia-Bonnefil, P. 2006. Loss of p53 induces changes in the behavior of subventricular zone cells: Implication for the genesis of glial tumors. J. Neurosci. 26, 1107-1116. https://doi.org/10.1523/JNEUROSCI.3970-05.2006
  12. Goncalves, A. P., Maximo, V., Lima, J., Singh, K. K., Soares, P. and Videira, A. 2011. Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone. Biochim. Biophys. Acta 1813, 492-499. https://doi.org/10.1016/j.bbamcr.2011.01.006
  13. Imayoshi, I., Sakamoto, M. and Kageyama, R. 2011. Genetic methods to identify and manipulate newly born neurons in the adult brain. Front. Neurosci. 5, 64.
  14. Levison, S. W., Rothstein, R. P., Brazel, C. Y., Young, G. M. and Albrecht, P. J. 2000. Selective apoptosis within the rat subependymal zone: A plausible mechanism for determining which lineages develop from neural stem cells. Dev. Neurosci. 22, 106-115. https://doi.org/10.1159/000017432
  15. Li, J., Spletter, M. L., Johnson, D. A., Wright, L. S., Svendsen, C. N. and Johnson, J. A. 2005. Rotenone-induced caspase 9/3-independent and -dependent cell death in undifferentiated and differentiated human neural stem cells. J. Neurochem. 92, 462-476. https://doi.org/10.1111/j.1471-4159.2004.02872.x
  16. Lunt, S. Y. and Vander Heiden, M. G. 2011. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441-464. https://doi.org/10.1146/annurev-cellbio-092910-154237
  17. Mandal, S., Lindgren, A. G., Srivastava, A. S., Clark, A. T. and Banerjee, U. 2011. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells 29, 486-495. https://doi.org/10.1002/stem.590
  18. Pamies, D., Block, K., Lau, P., Gribaldo, L., Pardo, C. A., Barreras, P., Smirnova, L., Wiersma, D., Zhao, L., Harris, G., Hartung, T. and Hogberg, H. T. 2018. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol. Appl. Pharmacol. In press.
  19. Park, K. Y., Oh, H., Lee, J. and Kim, M. S. 2017. Inhibition of neurogenesis of subventricular zone neural stem cells by 5-ethynyl-2'-deoxyuridine (edu). J. Life Sci. 27, 623-631.
  20. Park, K. Y., Na, Y. and Kim, M. S. 2016. Role of nox4 in neuronal differentiation of mouse subventricular zone neural stem cells. J. Life Sci. 26, 8-16. https://doi.org/10.5352/JLS.2016.26.1.8
  21. Pastrana, E., Cheng, L. C. and Doetsch, F. 2009. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc. Natl. Acad. Sci. USA. 106, 6387-6392. https://doi.org/10.1073/pnas.0810407106
  22. Petreanu, L. and Alvarez-Buylla, A. 2002. Maturation and death of adult-born olfactory bulb granule neurons: Role of olfaction. J. Neurosci. 22, 6106-6113. https://doi.org/10.1523/JNEUROSCI.22-14-06106.2002
  23. Pistollato, F., Canovas-Jorda, D., Zagoura, D. and Bal-Price, A. 2017. Nrf2 pathway activation upon rotenone treatment in human ipsc-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochem. Int. 108, 457-471. https://doi.org/10.1016/j.neuint.2017.06.006
  24. Price, J. D., Park, K. Y., Chen, J., Salinas, R. D., Cho, M. J., Kriegstein, A. R. and Lim, D. A. 2014. The ink4a/arf locus is a barrier to direct neuronal transdifferentiation. J. Neurosci. 34, 12560-12567. https://doi.org/10.1523/JNEUROSCI.3159-13.2014
  25. Ryu, J. R., Hong, C. J., Kim, J. Y., Kim, E. K., Sun, W. and Yu, S. W. 2016. Control of adult neurogenesis by programmed cell death in the mammalian brain. Mol. Brain 9, 43-62. https://doi.org/10.1186/s13041-016-0224-4
  26. Srivastava, P. and Panda, D. 2007. Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J. 274, 4788-4801. https://doi.org/10.1111/j.1742-4658.2007.06004.x
  27. Stoll, E. A., Cheung, W., Mikheev, A. M., Sweet, I. R., Bielas, J. H., Zhang, J., Rostomily, R. C. and Horner, P. J. 2011. Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J. Biol. Chem. 286, 38592-38601. https://doi.org/10.1074/jbc.M111.252171
  28. Tamm, C., Sabri, F. and Ceccatelli, S. 2008. Mitochondrialmediated apoptosis in neural stem cells exposed to manganese. Toxicol. Sci. 101, 310-320. https://doi.org/10.1093/toxsci/kfm267
  29. Wang, C. and Youle, R. J. 2009. The role of mitochondria in apoptosis. Annu. Rev. Genet. 43, 95-118. https://doi.org/10.1146/annurev-genet-102108-134850
  30. Wang, H., Dong, X., Liu, Z., Zhu, S., Liu, H., Fan, W., Hu, Y., Hu, T., Yu, Y., Li, Y., Liu, T., Xie, C., Gao, Q., Li, G., Zhang, J., Ding, Z. and Sun, J. 2018. Resveratrol suppresses rotenone-induced neurotoxicity through activation of sirt1/akt1 signaling pathway. Anat. Rec. 301, 1115-1125. https://doi.org/10.1002/ar.23781
  31. Xiong, N., Long, X., Xiong, J., Jia, M., Chen, C., Huang, J., Ghoorah, D., Kong, X., Lin, Z. and Wang, T. 2012. Mitochondrial complex i inhibitor rotenone-induced toxicity and its potential mechanisms in parkinson's disease models. Crit. Rev. Toxicol. 42, 613-632. https://doi.org/10.3109/10408444.2012.680431
  32. Xu, X., Duan, S., Yi, F., Ocampo, A., Liu, G. H. and Izpisua Belmonte, J. C. 2013. Mitochondrial regulation in pluripotent stem cells. Cell Metab. 18, 325-332. https://doi.org/10.1016/j.cmet.2013.06.005
  33. Zagoura, D., Canovas-Jorda, D., Pistollato, F., Bremer-Hoffmann, S. and Bal-Price, A. 2016. Evaluation of the rotenone-induced activation of the nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells. Neurochem. Int. 106, 62-73.