Expression of Kir2.1 Channels in Astrocytes Under Pathophysiological Conditions

  • Kang, Shin Jung (Department of Molecular Biology, Sejong University) ;
  • Cho, Sang-hee (Department of Neurology, Pohang e-Hospital, Dong-sin Medical Corporation) ;
  • Park, Kyungjoon (Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyunghee University) ;
  • Yi, Jihyun (Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyunghee University) ;
  • Yoo, Soon Ji (Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyunghee University) ;
  • Shin, Ki Soon (Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyunghee University)
  • Received : 2007.10.24
  • Accepted : 2007.10.30
  • Published : 2008.02.29

Abstract

Astrocyte ion channels participate in ionic homeostasis in the brain. Inward rectifying potassium channels (Kir channels) in astrocytes have been particularly implicated in $K^+$ homeostasis because of their high open probability at resting potential and their increased conductance at high concentrations of extracellular $K^+$. We examined the expression of the Kir2.1 subunit, one of the Kir channel subunits, in the mouse brain by immunohistochemistry. Kir2.1 channels were widely distributed throughout the brain, with high expression in the olfactory bulb and the cerebellum. Interestingly, they were abundantly expressed in astrocytes of the olfactory bulb, while astrocytes in other brain regions including the hippocampus did not show any detectable expression. However, Kir2.1 channel-expressing cells were dramatically increased in the hippocampus by kainic acid-induced seizure and the cells were glial fibrillary acidic protein (GFAP)-positive, which confirms that astrocytes in the hippocampus express Kir2.1 channels under pathological conditions. Our results imply that Kir2.1 channels in astrocyte may be involved in buffering $K^+$ against accumulated extracellular $K^+$ caused by neuronal hyperexcitability under phathophysiological conditions.

Keywords

Acknowledgement

Supported by : Kyung Hee University

References

  1. Alarcon, R., Fuenzalida, C., Santibanez, M., and von Bernhardi, R. (2005). Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J. Biol. Chem. 280, 30406-30415 https://doi.org/10.1074/jbc.M414686200
  2. Bailey, M.S. and Shipley, M.T. (1993). Astrocyte subtypes in the rat olfactory bulb: morphological heterogeneity and differential laminar distribution. J. Comp. Neurol. 328, 501-526 https://doi.org/10.1002/cne.903280405
  3. Ben-Ari, Y. (1985). Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375-403 https://doi.org/10.1016/0306-4522(85)90299-4
  4. Binami, A. (1995). Neuron-Glia Interrelations during Phylogeny. I. Phylogeny and Ontogeny of Glial Cells (New Jersey: Humana)
  5. Bordey, A. and Sontheimer, H. (1998). Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res. 32, 286-303 https://doi.org/10.1016/S0920-1211(98)00059-X
  6. Buck, L.B. (2000). The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611-618 https://doi.org/10.1016/S0092-8674(00)80698-4
  7. Butt, A.M. and Kalsi, A. (2006). Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J. Cell. Mol. Med. 10, 33-44 https://doi.org/10.1111/j.1582-4934.2006.tb00289.x
  8. Chao, T.I., Kasa, P., and Wolff, J.R. (1997). Distribution of astroglia in glomeruli of the rat main olfactory bulb: exclusion from the sensory subcompartment of neuropil. J. Comp. Neurol. 388, 191-210 https://doi.org/10.1002/(SICI)1096-9861(19971117)388:2<191::AID-CNE2>3.0.CO;2-X
  9. Constantinescu, C.S., Tani, M., Ransohoff, R.M., Wysocka, M., Hilliard, B., Fujioka, T., Murphy, S., Tighe, P.J., Sarma, J.D., Trinchieri, G., and Rostami, A. (2005). Astrocytes as antigenpresenting cells: expression of IL-12/IL-23. J. Neurochem. 95, 331-340 https://doi.org/10.1111/j.1471-4159.2005.03368.x
  10. D'Ambrosio, R., Maris, D.O., Grady, M.S., Winn, H.R., and Janigro, D. (1999). Impaired $K^{+}$ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J. Neurosci. 19, 8152-8162
  11. De Saint Jan, D. and Westbrook, G.L. (2005). Detecting activity in olfactory bulb glomeruli with astrocyte recording. J. Neurosci. 25, 2917-2924 https://doi.org/10.1523/JNEUROSCI.5042-04.2005
  12. Fisher, R.S., Pedley, T.A., Moody, W.J., and Prince, D.A. (1976). The role of extracellular potassium in hippocampal epilepsy. Arch. Neurol. 33, 76-83 https://doi.org/10.1001/archneur.1976.00500020004002
  13. Fontana. A., Fierz. W., and Wekerle, H. (1984). Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307, 273-276 https://doi.org/10.1038/307273a0
  14. Franklin, K.B.J. and Paxinos, G. (1997). The Mouse Brain in Stereotaxic Coordinates (California: Academic Press,)
  15. Gabriel, S., Eilers, A., Kivi, A., Kovacs, R., Schulze, K., Lehmann, T.N., and Heinemann, U. (1998a). Effects of barium on stimulus induced changes in exptracellular potassium concentration in area CA1 of hippocampal slices from normal and pilocarpine-treated epileptic rats. Neurosci. Lett. 242, 9-12 https://doi.org/10.1016/S0304-3940(98)00012-3
  16. Gabriel, S., Kivi, A., Eilers, A., Kovacs, R., and Heinemann, U. (1998b). Effects of barium on stimulus-induced rises in $\left[K^{+}\right]_{o}$ in juvenile rat hippocampal area CA1. NeuroReport 9, 2583-2587 https://doi.org/10.1097/00001756-199808030-00029
  17. Higashi, K., Fujita, A., Inanobe, A., Tanemoto, M., Doi, K., Kubo, T., and Kurachi, Y. (2001). An inwardly rectifying ($K^{+}$) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell Physiol. 281, C922-C931
  18. Hille, B. (2001). Ionic Channels in Excitable Membranes (Massachusetts: Sinauer Associates, INC)
  19. Hinterkeuser, S., Schröder, W., Hager, G., Seifert, G., Blümcke, I., Elger, C.E., Schramm, J., and Steinhäuser, C. (2000). Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductance. Eur. J. Neurosci. 12, 2087-2096 https://doi.org/10.1046/j.1460-9568.2000.00104.x
  20. Hull, M., Müksch, B., Akundi, R.S., Waschbisch, A., Hoozemans, J.J., Veerhuis, R., and Fiebich, B.L. (2006). Amyloid beta peptide (25-35) activates protein kinase C leading to cyclooxygenase-2 induction and prostaglandin E2 release in primary midbrain astrocytes. Neurochem. Int. 48, 663-672 https://doi.org/10.1016/j.neuint.2005.08.013
  21. Jabs, R., Paterson, I.A., and Walz, W. (1997). Qualitative analysis of membrane currents in glial cells from normal and gliotic tissue in situ: down-regulation of $Na^{+}$ current and lack of P2 purinergic responses. Neuroscience 81, 847-860 https://doi.org/10.1016/S0306-4522(97)00207-8
  22. Janigro, D., Gasparini, S., D'Ambrosio, R., McKhann, G. II., and DiFrancesco, D. (1997). Reduction of $K^{+}$ uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J. Neurosci. 17, 2813-2124
  23. Jansen, L.A., Uhlmann, E.J., Crino, P.B., Gutmann, D.H., and Wong, M. (2005). Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 46, 1871-1880 https://doi.org/10.1111/j.1528-1167.2005.00289.x
  24. Kimelberg, H.K. and Katz, D.M. (1985). High-affinity uptake of serotonin into immunocytochemically identified astrocytes. Science 228, 889-891 https://doi.org/10.1126/science.3890180
  25. Kimelberg, H.K. and Norenberg, M.D. (1989). Astrocytes Sci. Am. 260, 66-72
  26. Kofuji, P. and Newman, E.A. (2004). Potassium buffering in the central nervous system. Neuroscience 129, 1045-1056
  27. Kuffler, S.W. and Nicholls, J.G. (1966). The physiology of neuroglial cells. Ergeb. Physiol. 57, 1-90 https://doi.org/10.1007/BF02259903
  28. Nadler, J.V. (1981). Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci. 29, 2031-2042 https://doi.org/10.1016/0024-3205(81)90659-7
  29. Nadler, J.V. and Cuthbertson, G.J. (1980). Kainic acid neurotoxicity toward hippocampal formation: dependence on specific excitatory pathways. Brain Res. 195, 47-56 https://doi.org/10.1016/0006-8993(80)90865-3
  30. Neusch, C., Weishaupt, J.H., and Bahr, M. (2003). Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell Tissue Res. 311, 131-138
  31. Newman, E.A. (1984). Regional specialization of retinal glial cell membrane. Nature 309, 155-157 https://doi.org/10.1038/309155a0
  32. Newman, E.A. (1986). High potassium conductance in astrocyte endfeet. Science 233, 453-454 https://doi.org/10.1126/science.3726539
  33. Newman, E. and Reichenbach, A. (1996). The Muller cell: a functional element of the retina. Trends Neurosci. 19, 307-312 https://doi.org/10.1016/0166-2236(96)10040-0
  34. Nichols, C.G. and Loptain, A.N. (1997). Inward rectifier potassium channels. Ann. Rev. Physiol. 59, 171-191 https://doi.org/10.1146/annurev.physiol.59.1.171
  35. Park, C., Sohn, Y., Shin, K.S., Kim, J., Ahn, H., and Huhx, Y. (2003). The chronic inhibition of nitric oxide synthase enhances cell proliferation in the adult rat hippocampus. Neurosci. Lett. 339, 9-12 https://doi.org/10.1016/S0304-3940(02)01422-2
  36. Ransom, C.B. and Sontheimer, H. (1995). Biophysical and pharmacological characterization of inwardly rectifying $K^{+}$ currents in rat spinal cord astrocytes, J. Neurophysiol. 73, 333-346
  37. Schauwecker, P.E. and Steward, O. (1997). Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc. Natl. Acad. Sci. USA 94, 4103-4108
  38. Schousboe, A., Sarup, A., Bak, L.K., Waagepetersen, H.S., and Larsson, O.M. (2004). Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem. Int. 45, 521-527 https://doi.org/10.1016/j.neuint.2003.11.001
  39. Schroder, W., Seifert, G., Huttmann, K., Hinterkeuser, S., and Steinhauser, C. (2002). AMPA receptor-mediated modulation of inward rectifier $K^{+}$ channels in astrocytes of mouse hippocampus. Mol. Cell. Neurosci. 19, 447-458 https://doi.org/10.1006/mcne.2001.1080
  40. Sperk, G., Lassmann, H., Baran, H., Kish, S.J., Seitelberger, F., and Hornykiewicz, O. (1983). Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10, 1301-1315 https://doi.org/10.1016/0306-4522(83)90113-6
  41. Stonehouse, A.H., Pringle, J.H., Norman, R.I., Stanfield, P.R., Conley, E.C., and Brammar, W.J. (1999). Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem. Cell Biol. 112, 457-465 https://doi.org/10.1007/s004180050429
  42. Thomzig, A., Wenzel, M., Karschin, C., Eaton, M.J., Skatchkov, S.N., Karschin, A., and Veh, R.W. (2001). Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol. Cell. Neurosci. 18, 671-690 https://doi.org/10.1006/mcne.2001.1048
  43. Traynelis, S.F. and Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259-276
  44. Zhang, X., Gelowitz, D.L., Lai, C.T., Boulton, A.A., and Yu, P.H. (1997). Gradation of kainic acid-induced rat limbic seizures and expression of hippocampal heat shock protein-70. Eur. J. Neurosci. 9, 760-769 https://doi.org/10.1111/j.1460-9568.1997.tb01424.x