Acknowledgement
Supported by : Kyung Hee University
References
- Alarcon, R., Fuenzalida, C., Santibanez, M., and von Bernhardi, R. (2005). Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J. Biol. Chem. 280, 30406-30415 https://doi.org/10.1074/jbc.M414686200
- Bailey, M.S. and Shipley, M.T. (1993). Astrocyte subtypes in the rat olfactory bulb: morphological heterogeneity and differential laminar distribution. J. Comp. Neurol. 328, 501-526 https://doi.org/10.1002/cne.903280405
- Ben-Ari, Y. (1985). Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375-403 https://doi.org/10.1016/0306-4522(85)90299-4
- Binami, A. (1995). Neuron-Glia Interrelations during Phylogeny. I. Phylogeny and Ontogeny of Glial Cells (New Jersey: Humana)
- Bordey, A. and Sontheimer, H. (1998). Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res. 32, 286-303 https://doi.org/10.1016/S0920-1211(98)00059-X
- Buck, L.B. (2000). The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611-618 https://doi.org/10.1016/S0092-8674(00)80698-4
- Butt, A.M. and Kalsi, A. (2006). Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J. Cell. Mol. Med. 10, 33-44 https://doi.org/10.1111/j.1582-4934.2006.tb00289.x
- Chao, T.I., Kasa, P., and Wolff, J.R. (1997). Distribution of astroglia in glomeruli of the rat main olfactory bulb: exclusion from the sensory subcompartment of neuropil. J. Comp. Neurol. 388, 191-210 https://doi.org/10.1002/(SICI)1096-9861(19971117)388:2<191::AID-CNE2>3.0.CO;2-X
- Constantinescu, C.S., Tani, M., Ransohoff, R.M., Wysocka, M., Hilliard, B., Fujioka, T., Murphy, S., Tighe, P.J., Sarma, J.D., Trinchieri, G., and Rostami, A. (2005). Astrocytes as antigenpresenting cells: expression of IL-12/IL-23. J. Neurochem. 95, 331-340 https://doi.org/10.1111/j.1471-4159.2005.03368.x
-
D'Ambrosio, R., Maris, D.O., Grady, M.S., Winn, H.R., and Janigro, D. (1999). Impaired
$K^{+}$ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J. Neurosci. 19, 8152-8162 - De Saint Jan, D. and Westbrook, G.L. (2005). Detecting activity in olfactory bulb glomeruli with astrocyte recording. J. Neurosci. 25, 2917-2924 https://doi.org/10.1523/JNEUROSCI.5042-04.2005
- Fisher, R.S., Pedley, T.A., Moody, W.J., and Prince, D.A. (1976). The role of extracellular potassium in hippocampal epilepsy. Arch. Neurol. 33, 76-83 https://doi.org/10.1001/archneur.1976.00500020004002
- Fontana. A., Fierz. W., and Wekerle, H. (1984). Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307, 273-276 https://doi.org/10.1038/307273a0
- Franklin, K.B.J. and Paxinos, G. (1997). The Mouse Brain in Stereotaxic Coordinates (California: Academic Press,)
- Gabriel, S., Eilers, A., Kivi, A., Kovacs, R., Schulze, K., Lehmann, T.N., and Heinemann, U. (1998a). Effects of barium on stimulus induced changes in exptracellular potassium concentration in area CA1 of hippocampal slices from normal and pilocarpine-treated epileptic rats. Neurosci. Lett. 242, 9-12 https://doi.org/10.1016/S0304-3940(98)00012-3
-
Gabriel, S., Kivi, A., Eilers, A., Kovacs, R., and Heinemann, U. (1998b). Effects of barium on stimulus-induced rises in
$\left[K^{+}\right]_{o}$ in juvenile rat hippocampal area CA1. NeuroReport 9, 2583-2587 https://doi.org/10.1097/00001756-199808030-00029 -
Higashi, K., Fujita, A., Inanobe, A., Tanemoto, M., Doi, K., Kubo, T., and Kurachi, Y. (2001). An inwardly rectifying (
$K^{+}$ ) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell Physiol. 281, C922-C931 - Hille, B. (2001). Ionic Channels in Excitable Membranes (Massachusetts: Sinauer Associates, INC)
- Hinterkeuser, S., Schröder, W., Hager, G., Seifert, G., Blümcke, I., Elger, C.E., Schramm, J., and Steinhäuser, C. (2000). Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductance. Eur. J. Neurosci. 12, 2087-2096 https://doi.org/10.1046/j.1460-9568.2000.00104.x
- Hull, M., Müksch, B., Akundi, R.S., Waschbisch, A., Hoozemans, J.J., Veerhuis, R., and Fiebich, B.L. (2006). Amyloid beta peptide (25-35) activates protein kinase C leading to cyclooxygenase-2 induction and prostaglandin E2 release in primary midbrain astrocytes. Neurochem. Int. 48, 663-672 https://doi.org/10.1016/j.neuint.2005.08.013
-
Jabs, R., Paterson, I.A., and Walz, W. (1997). Qualitative analysis of membrane currents in glial cells from normal and gliotic tissue in situ: down-regulation of
$Na^{+}$ current and lack of P2 purinergic responses. Neuroscience 81, 847-860 https://doi.org/10.1016/S0306-4522(97)00207-8 -
Janigro, D., Gasparini, S., D'Ambrosio, R., McKhann, G. II., and DiFrancesco, D. (1997). Reduction of
$K^{+}$ uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J. Neurosci. 17, 2813-2124 - Jansen, L.A., Uhlmann, E.J., Crino, P.B., Gutmann, D.H., and Wong, M. (2005). Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 46, 1871-1880 https://doi.org/10.1111/j.1528-1167.2005.00289.x
- Kimelberg, H.K. and Katz, D.M. (1985). High-affinity uptake of serotonin into immunocytochemically identified astrocytes. Science 228, 889-891 https://doi.org/10.1126/science.3890180
- Kimelberg, H.K. and Norenberg, M.D. (1989). Astrocytes Sci. Am. 260, 66-72
- Kofuji, P. and Newman, E.A. (2004). Potassium buffering in the central nervous system. Neuroscience 129, 1045-1056
- Kuffler, S.W. and Nicholls, J.G. (1966). The physiology of neuroglial cells. Ergeb. Physiol. 57, 1-90 https://doi.org/10.1007/BF02259903
- Nadler, J.V. (1981). Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci. 29, 2031-2042 https://doi.org/10.1016/0024-3205(81)90659-7
- Nadler, J.V. and Cuthbertson, G.J. (1980). Kainic acid neurotoxicity toward hippocampal formation: dependence on specific excitatory pathways. Brain Res. 195, 47-56 https://doi.org/10.1016/0006-8993(80)90865-3
- Neusch, C., Weishaupt, J.H., and Bahr, M. (2003). Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell Tissue Res. 311, 131-138
- Newman, E.A. (1984). Regional specialization of retinal glial cell membrane. Nature 309, 155-157 https://doi.org/10.1038/309155a0
- Newman, E.A. (1986). High potassium conductance in astrocyte endfeet. Science 233, 453-454 https://doi.org/10.1126/science.3726539
- Newman, E. and Reichenbach, A. (1996). The Muller cell: a functional element of the retina. Trends Neurosci. 19, 307-312 https://doi.org/10.1016/0166-2236(96)10040-0
- Nichols, C.G. and Loptain, A.N. (1997). Inward rectifier potassium channels. Ann. Rev. Physiol. 59, 171-191 https://doi.org/10.1146/annurev.physiol.59.1.171
- Park, C., Sohn, Y., Shin, K.S., Kim, J., Ahn, H., and Huhx, Y. (2003). The chronic inhibition of nitric oxide synthase enhances cell proliferation in the adult rat hippocampus. Neurosci. Lett. 339, 9-12 https://doi.org/10.1016/S0304-3940(02)01422-2
-
Ransom, C.B. and Sontheimer, H. (1995). Biophysical and pharmacological characterization of inwardly rectifying
$K^{+}$ currents in rat spinal cord astrocytes, J. Neurophysiol. 73, 333-346 - Schauwecker, P.E. and Steward, O. (1997). Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc. Natl. Acad. Sci. USA 94, 4103-4108
- Schousboe, A., Sarup, A., Bak, L.K., Waagepetersen, H.S., and Larsson, O.M. (2004). Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem. Int. 45, 521-527 https://doi.org/10.1016/j.neuint.2003.11.001
-
Schroder, W., Seifert, G., Huttmann, K., Hinterkeuser, S., and Steinhauser, C. (2002). AMPA receptor-mediated modulation of inward rectifier
$K^{+}$ channels in astrocytes of mouse hippocampus. Mol. Cell. Neurosci. 19, 447-458 https://doi.org/10.1006/mcne.2001.1080 - Sperk, G., Lassmann, H., Baran, H., Kish, S.J., Seitelberger, F., and Hornykiewicz, O. (1983). Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10, 1301-1315 https://doi.org/10.1016/0306-4522(83)90113-6
- Stonehouse, A.H., Pringle, J.H., Norman, R.I., Stanfield, P.R., Conley, E.C., and Brammar, W.J. (1999). Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem. Cell Biol. 112, 457-465 https://doi.org/10.1007/s004180050429
- Thomzig, A., Wenzel, M., Karschin, C., Eaton, M.J., Skatchkov, S.N., Karschin, A., and Veh, R.W. (2001). Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol. Cell. Neurosci. 18, 671-690 https://doi.org/10.1006/mcne.2001.1048
- Traynelis, S.F. and Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259-276
- Zhang, X., Gelowitz, D.L., Lai, C.T., Boulton, A.A., and Yu, P.H. (1997). Gradation of kainic acid-induced rat limbic seizures and expression of hippocampal heat shock protein-70. Eur. J. Neurosci. 9, 760-769 https://doi.org/10.1111/j.1460-9568.1997.tb01424.x