• Title/Summary/Keyword: Glass Molding Process

Search Result 150, Processing Time 0.03 seconds

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber (유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가)

  • Jang, Yeong-Jin;Kim, Neul-Sae-Rom;Kwon, Dong-Jun;Yang, Seong Baek;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.346-352
    • /
    • 2020
  • In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.

Investigation of Weldline Strength with Various Heating Conditions (국부 금형가열에 조건에 따른 사출성형품 웰드라인의 강도 고찰)

  • Park, Keun;Sohn, Dong-Hwi;Seo, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.105-112
    • /
    • 2010
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. The weldlines are unavoidable in the cases of presence of holes or inserts, multi-gated delivery systems, significant thickness change, etc. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

Capillary-driven Rigiflex Lithography for Fabricating High Aspect-Ratio Polymer Nanostructures (모세관 리소그라피를 이용한 고종횡비 나노구조 형성법)

  • Jeong, Hoon-Eui;Lee, Sung-Hoon;Kim, Pil-Nam;Suh, Kahp-Y.
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.3-8
    • /
    • 2007
  • We present simple methods for fabricating high aspect-ratio polymer nanostructures on a solid substrate by rigiflex lithography with tailored capillarity and adhesive force. In the first method, a thin, thermoplastic polymer film was prepared by spin coating on a substrate and the temperature was raised above the polymer's glass transition temperature ($T_g$) while in conformal contact with a poly(urethane acrylate) (PUA) mold having nano-cavities. Consequently, capillarity forces the polymer film to rise into the void space of the mold, resulting in nanostructures with an aspect ratio of ${\sim}4$. In the second method, very high aspect-ratio (>20) nanohairs were fabricated by elongating the pre-formed nanostructures upon removal of the mold with the aid of tailored capillarity and adhesive force at the mold/polymer interface. Finally, these two methods were further used to fabricate micro/nano hierarchical structures by sequential application of the molding process for mimicking nature's functional surfaces such as a lotus leaf and gecko foot hairs.

Microfilter Chip Fabrication for Bead-Based Immunoassay (비드를 이용한 면역분석용 마이크로필터 칩의 제작)

  • Lee, Seung-Woo;Ahn, Yoo-Min;Chai, Young-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1429-1434
    • /
    • 2004
  • Immunoassay is one of the important analytical methods for clinical diagnoses and biochemical studies, but needs a long time, troublesome procedures and expensive reagents. In this study, therefore, we propose the micro filter chip with microbeads for immunoassay, which has pillar structures. The advantage of the proposed micro filter chip is to use simple fabrication process and cheap materials. The mold was made by the photolithography technique with Si wafer and negative photoresist SU-8. The replica was made of PDMS, bonded on the pyrex glass. The micro filter chip consists of inlet channel, filter chamber and outlet channel. HBV (Hepatitius B virus) monoclonal antibody (Ag1) labeled with biotin were immobilized onto streptavidin coated beads of 30∼50 $\mu$m size. Fluorescein isothiocyanate (FITC)-labeled HBV monoclonal antibody (Ag8) was used to detect HBsAg (Hebatitis B virus surface Antigen), and fluorescence intensity was monitored by epi-fluorescence microscope. In this study, the immune response of less than 30 min was obtained with with the use of 100 $m\ell$ of sample.

Heat & Cool Injection Molded Fresnel Lens Solar Concentrators (가열-냉각 사출성형 방식을 적용한 집광형 프레넬렌즈)

  • Jeong, Byeong-Ho;Min, Wan-Ki;Lee, Kang-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.283-289
    • /
    • 2014
  • A Fresnel lens is an optical component which can be used as a cost-effective, lightweight alternative to conventional continuous surface optics. Fresnel lens solar concentrators continue to fulfill a market requirement as a system component in high volume cost effective Concentrating Photovoltaic (CPV) electricity generation. The basic principles of the fresnel lens are reviewed and some practical examples are described. To investigate the performance space of the Fresnel lens, a fast simulation method which is a hybrid between raytracing and analytical computation is employed to generate a cache of simulation data. Injection molders are warming up to the idea of cycling their tool surface temperature during the molding cycle rather than keeping it constant. Heat and cool process are now also finding that raising the mold wall temperature above the resin's glass-transition or crystalline melting temperature during the filling stage and product performance in applications from automotive to packaging to optics. This paper deals with the suitability of Fresnel lenses of imaging and non-imaging designs for solar energy concentration. The concentration fresnel lens confirmed machinability and optical transmittance and roughness measure through manufactured the prototype.

Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package (수치해석을 이용한 팬 아웃 웨이퍼 레벨 패키지의 휨 경향 및 신뢰성 연구)

  • Lee, Mi Kyoung;Jeoung, Jin Wook;Ock, Jin Young;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • For mobile application, semiconductor packages are increasingly moving toward high density, miniaturization, lighter and multi-functions. Typical wafer level packages (WLP) is fan-in design, it can not meet high I/O requirement. The fan-out wafer level packages (FOWLPs) with reconfiguration technology have recently emerged as a new WLP technology. In FOWLP, warpage is one of the most critical issues since the thickness of FOWLP is thinner than traditional IC package and warpage of WLP is much larger than the die level package. Warpage affects the throughput and yield of the next manufacturing process as well as wafer handling and fabrication processability. In this study, we investigated the characteristics of warpage and main parameters which affect the warpage deformation of FOWLP using the finite element numerical simulation. In order to minimize the warpage, the characteristics of warpage for various epoxy mold compounds (EMCs) and carrier materials are investigated, and DOE optimization is also performed. In particular, warpage after EMC molding and after carrier detachment process were analyzed respectively. The simulation results indicate that the most influential factor on warpage is CTE of EMC after molding process. EMC material of low CTE and high Tg (glass transition temperature) will reduce the warpage. For carrier material, Alloy42 shows the lowest warpage. Therefore, considering the cost, oxidation and thermal conductivity, Alloy42 or SUS304 is recommend for a carrier material.

Cell Patterning on Various Substrates Using Polyelectrolyte Multilayer and Microstructure of Poly(Ethylene Glycol) (다양한 기판 위에서 고분자 전해질 다층 막과 폴리에틸렌글리콜 미세 구조물을 이용한 세포 패터닝 방법)

  • Shim, Hyun-Woo;Lee, Ji-Hye;Choi, Ho-Suk;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1100-1106
    • /
    • 2008
  • In this study, we presented rapid and simple fabrication method of functionalized surface on various substrates as a universal platform for the selective immobilization of cells. The functionalized surface was achieved by using deposition of polyelectrolyte such as poly(allyamine hydrochloride) (PAH), poly(diallyldimethyl ammonium chloride) (PDAC), poly(4-ammonium styrene sulfonic acid) (PSS), poly(acrylic acid) (PAA) and fabrication of poly(ethylene glycol) (PEG) microstructure through micro-molding in capillaries (MIMIC) technique on each glass, poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(dimethyl siloxane) (PDMS) substrate. The polyelectrolyte multilayer provides adhesion force via strong electrostatic attraction between cell and surface. On the other hand, PEG microstructures also lead to prevent non-specific binding of cells because of physical and biological barrier. The characteristic of each modified surface was examined by using static contact angle measurement. The modified surface onto several substrates provides appropriate environment for cellular adhesion, which is essential technology for cell patterning with high yield and viability in the micropatterning technology. The proposed method is reproducible, convenient and rapid. In addition, the fabrication process is environmentally friendly process due to the no use of harsh solvent. It can be applied to the fabrication of biological sensor, biomolecules patterning, microelectronics devices, screening system, and study of cell-surface interaction.

Fabrication of Ceramic Filters via Binder Jetting Type 3D Printing Technology (바인더 젯팅 적층제조기술을 활용한 다공성 세라믹필터 제작)

  • Mose Kwon;Jong-Han Choi;Kwang-Taek Hwang;Jung-Hoon Choi;Kyu-Sung Han;Ung-Soo Kim;Jin-Ho Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.285-294
    • /
    • 2023
  • Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.

A Study on the Prediction of Thermally-Induced Residual Stress and Birefringence in Quenched Polystyrene Plate Including Free Volume Theory (자유 체적이론을 고려한 급냉 폴리스티렌판에 발생하는 잔류응력과 복굴절 형성에 관한 연구)

  • Kim, Jong-Sun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.77-87
    • /
    • 2003
  • The residual stress and birefringence in injection-molded plastic parts can be divided into the flow-induced residual stress and birefringence produced in flowing stage, the thermally-induced residual stress and birefringence produced in cooling stage. However, the physics involved in the generation of the thermally-induced residual stress and birefringence still remains to be understood. Because polymer experiences viscoelastic history near the glass-transition temperature it is hard to model the entire process. Volume relaxation phenomenon was included to predict the final thermally-induced residual stress and birefringence in quenched plastic parts more accurately. The present study focused on comparing the predicted values far thermally-induced residual stress and birefringence with and without volume relaxation behavior (or free volume theory) under free and constrained quenching conditions. As a result, tile residual stress remained as a tensile stress at the center and as a compressible stress near the surface for the free quenching cases. In contract the residual stress remained as a compressible stress at the center and as a tensile stress near the surface fur the constrained quenching cases. The residual birefringence remained as minus values at the center and as plus values near the surface for the free quenching cases. Interestingly the residual birefringence showed minus values in entire zone for the constrained quenching cases. In the prediction of birefringence only the case including free volume theory showed the correct result for the distribution of birefringence in thickness direction.

A Study on the Base Material Specific and Processing Methods of Recycled New Materials in Space (실내공간에 사용되는 재활용 신재료의 소재 및 가공방법 연구)

  • Seo, Ji-Eun;Jeong, Hee-Jeong
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.3
    • /
    • pp.22-30
    • /
    • 2012
  • Nowadays the issue of environmental pollution and ecological destruction is not a simple issue but an important issue to be continuously considered. It is deemed that a study for recycled new materials is immediately required and this study is to analyze features and processing methods of new materials which can be used to interior space. We found the recycled new materials used for space through researching various web sits. And then we analyzed what the base materials are and classified that base materials are whether natural or artificial of the recycled materials. We classified processing methods of the recycled new materials after researching general processing methods. The result of this study would be an important material to the research and development of new finishing materials with consideration of environment and to the research for a guideline of applicable new materials. The results of this study are as follows : First, we could classify widely 2 categories into natural material and artificial material and then 10 subcategories into metal, glass, wood, rubber, stone, plastic, leather or fabric, ceramic, concrete and so on, and analyzed that which material is mostly used and whether it is single material or multiple material. In order to analyze the feature of processing method. Second, we could classify into 4 categories such as junction, surface process, molding, and insert, and found out which processing method is applied based on objects of research. Third, as an analysis result of the recycled new material feature, in order to develop various new materials, it is required to study on combination and application of 2 materials or more rather than single material. Four, as a analysis result of the processing method feature, I would like to suggest that development and application of various processing methods are required. Especially, it is necessary to grope for a way to develop new functional materials for interior space through a systemic research and analysis of processing method of other fields. Furthermore, a way to reuse recycled new materials should be considered in a stage of selection and application of processing method.

  • PDF