DOI QR코드

DOI QR Code

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber

유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가

  • Jang, Yeong-Jin (R&D Dept, LARGE Co., Ltd.) ;
  • Kim, Neul-Sae-Rom (R&D Dept, LARGE Co., Ltd.) ;
  • Kwon, Dong-Jun (Research Institute for Green Energy Convergence Technology (RIGET), Gyeongsang National University) ;
  • Yang, Seong Baek (Department of Advanced Organic Materials Science and Engineering, Kyungpook National University) ;
  • Yeum, Jeong Hyun (Department of Advanced Organic Materials Science and Engineering, Kyungpook National University)
  • Received : 2020.10.13
  • Accepted : 2020.10.28
  • Published : 2020.12.31

Abstract

In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.

열가소성 복합재료는 수송용 기기의 구조용 소재로써 적용 분야가 확대되고 있다. 따라서 본 연구에서는 유리섬유(GF) 함량 차이에 따른 연속섬유 강화 GF/폴리프로필렌(PP)의 기계적 물성 및 함침성에 대한 평가를 진행하였다. GF 함량이 다른 GF/PP 복합원사를 제조하고 이를 이용하여 연속가압공정법으로 연속섬유 강화 GF/PP 중간재를 제조하였다. GF 함량에 따른 연속섬유 강화 GF/PP 복합재료의 인장강도, 굴곡강도 및 충격강도를 평가하였다. 전계방사형 주사전자현미경을 이용하여 인장파괴 된 GF/PP의 형태를 분석하여 GF 함량에 따른 파괴거동을 확인하였고, 동적기계분석 및 층간전단강도 측정 결과를 바탕으로 GF 함량에 따른 함침성 차이를 확인하였다. 궁극적으로 GF/PP 50 wt.% 복합재료 조건에서 기계적 강도와 함침성이 가장 안정화됨을 확인하였다.

Keywords

References

  1. Vaidya, U.K., and Chawla, K.K., "Processing of Fibre Reinforced Thermoplastic Composites," International Materials Reviews, Vol. 53, No. 4, 2008, pp. 185-218. https://doi.org/10.1179/174328008X325223
  2. Zhou, L.D., and Zhuang, Z., "Strength Analysis of Three-dimensional Braided T-shaped Composite Structures," Composite Structures, Vol. 104, 2013, pp. 162-168. https://doi.org/10.1016/j.compstruct.2013.04.023
  3. Xiao, X., Kia, H.G., and Gong, X.-J., "Strength Prediction of a Triaxially Braided Composite," Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 8, 2011, pp. 1000-1006. https://doi.org/10.1016/j.compositesa.2011.04.003
  4. Park, D.-C., Park, C.-W., Shin, D.-H., and Kim, Y.-H., "A Study on Crystallization of Thermoplastic Aromatic Polymer," The Journal of the Korean Society for Composite Materials, Vol. 31, No. 2, 2018, pp. 63-68.
  5. Ryoo, H.W., Lee, D.G., and Kim, E.G., "An Effect of Fiber Length on the Correlation between Separation and Orientation of Flow Molded Fiber-Reinforced Polymeric Composites", The Journal of the Korean Society for Composite Materials, Vol. 6, No. 1, 1993, pp. 19-28.
  6. Kim, N.S.R., Lee, E,S., Jang, Y.J., Kwon, D.J., Yang, S.B., Yeum, J.H., "Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite", The Journal of the Korean Society for Composite Materials, Vol. 31, No. 6, 2018, pp. 317-322.
  7. Hwang, Y.-T., Lim, J.-Y., Nam, B.-G., and Kim, H.-S., "Analytical Prediction and Validation of Elastic Behavior of CarbonFiber-Reinforced Woven Composites", The Journal of the Korean Society for Composite Materials, Vol. 31, No. 5, 2018, pp. 276-281.
  8. Kilic, M.H., "Three-dimensional Micromechanical Models for the Nonlinear Analysis of Pultruded Composite Structures", Georgia Institute of Technology, 2001.
  9. Gardiner, G., "Aerospace-grade Compression Molding: Continuous Compression Molding Process Produces Structures 30 Percent Lighter than Aluminum at Costs that have Both Airbus and Boeing Sold", High Performance Composites, Vol. 18, No. 4, 2010, pp. 34-40.
  10. Song, S.A., On, S.Y., Park, G.E., and Kim, S.S., "Improvement of Physical Properties for Carbon Fiber/PA 6,6 Composites", The Journal of the Korean Society for Composite Materials, Vol. 30, No. 6, 2017, pp. 365-370.
  11. Roy, D., Buravalla, V., Mangalgiri, P.D., Allegavi, S., and Ramamurty, U., "Mechanical Characterization of NiTi SMA Wires Using a Dynamic Mechanical Analyzer", Materials Science and Engineering: A, Vol. 494, No. 1-2, 2008, pp. 429-435. https://doi.org/10.1016/j.msea.2008.04.052
  12. Lee, W., Um, M.-K., Byun, J.-H., and Cao, J., "Characterization of In-plane Shear Behaviors of Woven Fabrics by Bias-extension and Trellis-frame Tests", The Journal of the Korean Society for Composite, Vol. 23, No. 5, 2010, pp. 8-14.
  13. Fu, S.Y., Lauke, B., Mäder, E., Yue, C.Y., and Hu, X., "Tensile Properties of Short Glass Fiber and Short Carbon Fiber Reinforced Polypropylene Composites", Composites Part A: Applied Science and Manufacturing, Vol. 31, No. 10, 2000, pp. 1117-1125. https://doi.org/10.1016/S1359-835X(00)00068-3
  14. Jang, Y.J., and Jang, J.H., "The Improvement of Thermal Stability and Tensile Toughness by the Photocrosslinking of Poly (phenylene sulfide) Containing Acetophenone," Textile Coloration and Finishing, Vol. 24, No. 4, 2012, pp. 281-287. https://doi.org/10.5764/TCF.2012.24.4.281