DOI QR코드

DOI QR Code

Capillary-driven Rigiflex Lithography for Fabricating High Aspect-Ratio Polymer Nanostructures

모세관 리소그라피를 이용한 고종횡비 나노구조 형성법

  • 정훈의 (서울대학교 기계항공공학부) ;
  • 이성훈 (서울대학교 기계항공공학부) ;
  • 김필남 (서울대학교 기계항공공학부) ;
  • 서갑양 (서울대학교 기계항공공학부)
  • Published : 2007.06.30

Abstract

We present simple methods for fabricating high aspect-ratio polymer nanostructures on a solid substrate by rigiflex lithography with tailored capillarity and adhesive force. In the first method, a thin, thermoplastic polymer film was prepared by spin coating on a substrate and the temperature was raised above the polymer's glass transition temperature ($T_g$) while in conformal contact with a poly(urethane acrylate) (PUA) mold having nano-cavities. Consequently, capillarity forces the polymer film to rise into the void space of the mold, resulting in nanostructures with an aspect ratio of ${\sim}4$. In the second method, very high aspect-ratio (>20) nanohairs were fabricated by elongating the pre-formed nanostructures upon removal of the mold with the aid of tailored capillarity and adhesive force at the mold/polymer interface. Finally, these two methods were further used to fabricate micro/nano hierarchical structures by sequential application of the molding process for mimicking nature's functional surfaces such as a lotus leaf and gecko foot hairs.

Keywords

References

  1. Aimi, M.F., Rao, M.P., Macdonald, N.C., Zuruzi, A.S. and Bothman, D.P., 2004, "High-aspect-ratio bulk micromachining of titanium," Nature Materials, Vol.3(2), pp.103-105. https://doi.org/10.1038/nmat1058
  2. Jang, J.E. et al., 2005, "Nanoscale capacitors based on metal-insulator-carbon nanotube-metal structures," Appl. Phys. Lett., Vol.87(26), -.
  3. Rangelow, I.W. and Biehl, S., 2001, "Fabrication and electrical characterization of high aspect ratio silicon field emitter arrays," J. Vac. Sci. Technol. B, Vol.19(3), pp.916-919. https://doi.org/10.1116/1.1371018
  4. Tan, J.L. et al., 2003, "Cells lying on a bed of microneedles: An approach to isolate mechanical force," P. Natl. Acad. Sci. USA, Vol.100(4), pp. 1484-1489. https://doi.org/10.1073/pnas.0235407100
  5. Geim, A.K. et al., 2003, "Microfabricated adhesive mimicking gecko foot-hair," Nature Materials, Vol. 2(7), pp.461-463. https://doi.org/10.1038/nmat917
  6. Sitti, M. and Fearing, R.S., 2003, "Synthetic gecko foot-hair micro/nano-structures as dry adhesives," J. Adhesion Science and Technology, Vol.17(8), pp. 1055-1073. https://doi.org/10.1163/156856103322113788
  7. Yurdumakan, B., Raravikar, N.R., Ajayan, P.M. and Dhinojwala, A., 2005, "Synthetic gecko foot-hairs from multiwalled carbon nanotubes," Chemcal Communications Vol.(30), pp.3799-3801.
  8. Madou, M.J., 2002, "Fundamentals of microfabrication : the science of miniaturization," CRC Press, Boca Raton, Fla.
  9. Chou, S.Y., Krauss, P.R. and Renstrom, P.J., 1996, "Imprint lithography with 25-nanometer resolution," Science, Vol.272(5258), pp.85-87. https://doi.org/10.1126/science.272.5258.85
  10. Xia, Y.N. and Whitesides, G.M., 1998, "Soft lithography," Annu. Rev. Mater. Sci., Vol.28, pp.153-184. https://doi.org/10.1146/annurev.matsci.28.1.153
  11. Hui, C.Y., Jagota, A., Lin, Y.Y. and Kramer, E.J., 2002, "Constraints on microcontact printing imposed by stamp deformation," Langmuir, Vol.18(4), pp.1394-1407. https://doi.org/10.1021/la0113567
  12. Bietsch, A. and Michel, B., 2000, "Conformal contact and pattern stability of stamps used for soft lithography," J. Appl. Phys., Vol.88(7), pp.4310-4318. https://doi.org/10.1063/1.1289816
  13. Choi, S.J., Yoo, P.J., Baek, S.J., Kim, T.W. and Lee, H.H., 2004, "An ultraviolet-curable mold for sub- 100-nm lithography," J. Am. Chem. Soc., Vol.126 (25), pp.7744-7745. https://doi.org/10.1021/ja048972k
  14. Suh, D., Choi, S.J. and Lee, H.H., 2005, "Rigiflex lithography for nanostructure transfer," Adv. Mater., Vol.17(12), pp.1554-1560. https://doi.org/10.1002/adma.200402010
  15. Jeong, H. E., Lee, S. H., Kim, P., Suh, K. Y., 2006, "Stretched polymer nanohairs by nanodrawing," Nano. Lett., Vol.6, pp.1508-1513. https://doi.org/10.1021/nl061045m
  16. Jeong, H. E., Lee, S. H., Kim, J. K., Suh, K. Y., 2006, "Nanoengineered multiscale hierarchical structures with tailored wetting properties," Langmuir Vol.22, pp.1640-1645. https://doi.org/10.1021/la0526434
  17. Suh, K.Y., Choi, S.J., Baek, S.J., Kim, T.W. and Langer, R., 2005, "Observation of high aspect ratio nanostructures using capillary lithography," Adv. Mater., Vol.17, pp.560-564. https://doi.org/10.1002/adma.200401089
  18. Stutzmann, N., Tervoort, T.A., Bastiaansen, K. and Smith, P., 2000, "Patterning of polymer-supported metal films by microcutting," Nature, Vol.407 (6804), pp.613-616. https://doi.org/10.1038/35036545
  19. Kim, C., Burrows, P.E. and Forrest, S.R., 2000, "Micropatterning of organic electronic devices by cold-welding," Science, Vol.288(5467), pp.831-833. https://doi.org/10.1126/science.288.5467.831
  20. Choi, J.H., Kim, D., Yoo, P.J. and Lee, H.H., 2005, "Simple detachment patterning of organic layers and its application to organic light-emitting diodes," Adv. Mater., Vol.17(2), p.166-+. https://doi.org/10.1002/adma.200400223
  21. Neinhuis, C. and Barthlott, W., 1997, "Characterization and distribution of water-repellent, self-cleaning plant surfaces," Ann. Bot-London, Vol.79(6), pp. 667-677. https://doi.org/10.1006/anbo.1997.0400
  22. Ball, P., 1999, "Engineering - Shark skin and other solutions," Nature, Vol.400(6744), p.507-+. https://doi.org/10.1038/22883
  23. Feng, L. et al., 2002, "Super-hydrophobic surfaces: From natural to artificial," Adv. Mater., Vol.14(24), pp.1857-1860. https://doi.org/10.1002/adma.200290020
  24. Arzt, E., Gorb, S. and Spolenak, R., 2003, "From micro to nano contacts in biological attachment devices," P. Natl. Acad. Sci. USA, Vol.100(19), pp. 10603-10606. https://doi.org/10.1073/pnas.1534701100
  25. Zhao, N. et al., 2005, "Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure," Macromol. Rapid. Comm., Vol.26(13), pp.1075-1080. https://doi.org/10.1002/marc.200500188
  26. Erbil, H.Y., Demirel, A.L., Avci, Y. and Mert, O., 2003, "Transformation of a simple plastic into a superhydrophobic surface," Science, Vol.299(5611), pp. 1377-1380. https://doi.org/10.1126/science.1078365
  27. Lu, X.Y., Zhang, C.C. and Han, Y.C., 2004, "Lowdensity polyethylene superhydrophobic surface by control of its crystallization behavior," Macromol. Rapid. Comm., Vol.25(18), pp.1606-1610. https://doi.org/10.1002/marc.200400256
  28. Xie, Q.D. et al., 2004, "Facile creation of a bionic super-hydrophobic block copolymer surface," Adv. Mater., Vol.16(20), p.1830-+. https://doi.org/10.1002/adma.200400074
  29. Thangawng, A.L. and Lee, J., 2004, "Fabrication of micro/nano integrated roughened structure using nanosphere lithography (NSL)," 2004 ASME International Mechanical Engineering Congress. Proceedings of IMECE04, Anaheim, pp. 13-20.
  30. Li, S.H. et al., 2002, "Super-hydrophobicity of largearea honeycomb-like aligned carbon nanotubes," J. Phys. Chem. B, Vol.106(36), pp.9274-9276. https://doi.org/10.1021/jp0209401
  31. Lau, K.K.S. et al., 2003, "Superhydrophobic carbon nanotube forests," Nano. Lett., Vol.3(12), pp.1701-1705. https://doi.org/10.1021/nl034704t
  32. Autumn, K. et al., 2000, "Adhesive force of a single gecko foot-hair," Nature, Vol.405(6787), pp.681-685. https://doi.org/10.1038/35015073