• 제목/요약/키워드: Ginseng-derived compounds

검색결과 31건 처리시간 0.027초

Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells

  • Ji-Sun Lee;Ho-Young Lee
    • Journal of Ginseng Research
    • /
    • 제48권3호
    • /
    • pp.266-275
    • /
    • 2024
  • Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.

Functional role of ginseng-derived compounds in cancer

  • Ahuja, Akash;Kim, Ji Hye;Kim, Jong-Hoon;Yi, Young-Su;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.248-254
    • /
    • 2018
  • Ginseng is a natural product best known for its curative properties in diverse physiological processes such as cancer, neurodegenerative disorders, hypertension, and maintenance of hemostasis in the immune system. In previous decades, there have been some promising studies into the pharmacology and chemistry of ginseng components and the relationship between their structure and function. The emerging use of modified ginseng and development of new compounds from ginseng for clinical studies have been topics of study for many researchers. The present review deals with the anticancer, anti-inflammatory, antioxidant, and chemopreventive effects, and recent advances in microRNA technology related to red ginseng. The review also summarizes the current knowledge on the effect of ginsenosides in the treatment of cancer.

Therapeutic applications of ginseng for skeletal muscle-related disorder management

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Inho Choi
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.12-19
    • /
    • 2024
  • Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.

Newly identified maltol derivatives in Korean Red Ginseng and their biological influence as antioxidant and anti-inflammatory agents

  • Jeong Hun Cho;Myoung Chong Song;Yonghee Lee;Seung-Taek Noh;Dae-Ok Kim;Chan-Su Rha
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.593-603
    • /
    • 2023
  • Background: Korean Red Ginseng is a major source of bioactive substances such as ginsenosides. Efficacy of red ginseng extract (RGE), which contains not only saponins but also various non-saponins, has long been studied. In the water-soluble component-rich fraction of RGE (WS), a byproduct generated in the process of extracting saponins from the RGE, we identified previously unidentified molecules and confirmed their efficacy. Methods: The RGE was prepared and used to produce WS, whose components were isolated sequentially according to their water affinity. The new compounds from WS were fractionized and structurally analyzed using nuclear magnetic resonance spectroscopy. Physiological applicability was evaluated by verifying the antioxidant and anti-inflammatory efficacies of these compounds in vitro. Results: High-performance liquid chromatography confirmed that the obtained WS comprised 11 phenolic acid and flavonoid substances. Among four major compounds from fractions 1-4 (F1-4) of WS, two compounds from F3 and F4 were newly identified in red ginseng. The analysis results show that these compound molecules are member of the maltol-structure-based glucopyranose series, and F1 and F4 are particularly effective for decreasing oxidative stress levels and inhibiting nitric oxide secretion, interleukin (IL)-1β and IL-6, and tumor necrosis factor-α. Conclusion: Our findings suggest that a few newly identified maltol derivatives, such as red ginseng-derived non-saponin in the WS, exhibit antioxidant and anti-inflammatory effects, making them viable candidates for application to pharmaceutical, cosmetic, and functional food materials.

A novel tetrapeptide for the treatment of hair loss identified in ginseng berry: in silico characterization and molecular docking with TGF-β2

  • Sung-Gyu Lee;Sang Moon Kang;Hyun Kang
    • Journal of Plant Biotechnology
    • /
    • 제49권4호
    • /
    • pp.316-324
    • /
    • 2022
  • Hair loss causes psychological stress due to its effect on appearance. Therefore, the global market for hair loss treatment products is rapidly growing. The present study demonstrated that ginseng berry-derived and sequence-modified peptides promoted the proliferation rate of dermal papilla (DP) cells and keratinocytes, in addition to having antioxidant properties. Moreover, the potential role of these ginseng berry peptides as TGF-β2 antagonists was confirmed through in silico computer docking. In addition to promoting the growth of ,the ginseng berry-derived peptides also promoted the proliferation of keratinocytes experimental Particularly, an unmodified ginseng berry-derived peptide (GB-1) and two peptides with sequence modifications (GB-2 and GB-3) decreased ROS generation and exhibited a protective effect on damaged HaCaT keratinocytes. Computer-aided peptide discovery was conducted to identify the potential interactions of important proteins with transforming growth factor-beta 2 (TGF-β2), a key protein that plays a crucial role in the human hair growth cycle. Our results demonstrated that MAGH, an amino acid sequence present in herbal supplements and plant-based natural compounds, can inhibit TGF-β2.

Medicinal potential of Panax ginseng and its ginsenosides in atopic dermatitis treatment

  • Lorz, Laura Rojas;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.8-13
    • /
    • 2020
  • Atopic dermatitis (AD) is a chronic and relapsing inflammatory disease that affects 1%-20% of people worldwide. Despite affecting many people, AD current treatments, such as corticosteroids and calcineurin inhibitors, have not only harmful secondary effects but are also often ineffective. Therefore, natural nontoxic compounds are on high demand for developing new effective AD treatments. Panax ginseng Meyer has been used traditionally for its promising healing and restorative properties to treat many diseases including skin disorders, reason why in this review we want to explore the research performed with AD and P. ginseng as well as determining its potential for new drug development. Previous researches have shown that P. ginseng has positive effects in AD patients such as lower eczema area and severity index, transepidermal water loss, and immunoglobulin E levels and better quality of sleep. In vivo animal models, as well, have shown positive results to P. ginseng and derived ginsenosides, such as the decrease of transepidermal water loss, immunoglobulin E levels in serum, allergy-related cytokines, and downregulation of NF-κB, MAPK, and Ikaros pathways. All of these previous data suggest that P. ginseng and its derived ginsenosides are undoubtedly a nontoxic effective option to treat AD.

인삼(人蔘)과 홍삼(紅蔘)의 네트워크 약리학적 분석 결과 비교 (Comparison of network pharmacology based analysis on White Ginseng and Red Ginseng)

  • 박소현;이병호;진명호;조수인
    • 대한한의학방제학회지
    • /
    • 제28권3호
    • /
    • pp.243-254
    • /
    • 2020
  • Objectives : Network pharmacology analysis is commonly used to investigate the synergies and potential mechanisms of multiple compounds by analyzing complex, multi-layered networks. We used TCMSP and BATMAN-TCM databases to compare results of network pharmacological analysis between White Ginseng(WG) and Red Ginseng(RG). Methods : WG and RG were compared with components and their target molecules using TCMSP database, and compound-target-pathway/disease networks were compared using BATMAN-TCM database. Results : Through TCMSP, 104 kinds of target molecules were derived from WG and 38 kinds were derived from RG. Using the BATMAN-TCM database, target pathways and diseases were screened, and more target pathways and diseases were screened compared to RG due to the high composition of WG ingredients. Analysis of component-target-pathway/disease network using network analysis tools provided by BATMAN-TCM showed that WG formed more networks than RG. Conclusions : Network pharmacology analysis can be effectively performed using various databases used in system biology research, and although the materials that have been reported in the past can be used efficiently for research on diseases related to targets, the results are unreliable if prior studies are focused on limited or narrow research areas.

Chemical and Pharmacological Studies of Saponins with a Focus on American Ginseng

  • Yuan, Chun-Su;Wang, Chong-Zhi;Wicks, Sheila M.;Qi, Lian-Wen
    • Journal of Ginseng Research
    • /
    • 제34권3호
    • /
    • pp.160-167
    • /
    • 2010
  • Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) are the two most recognized ginseng botanicals. It is believed that the ginseng saponins called ginsenosides are the major active constituents in both ginsengs. Although American ginseng is not as extensively studied as Asian ginseng, it is one of the best selling herbs in the US, and has garnered increasing attention from scientists in recent years. In this article, after a brief introduction of the distribution and cultivation of American ginseng, we discuss chemical analysis of saponins from these two ginsengs, i.e., their similarities and differences. Subsequently, we review pharmacological effects of the saponins, including the effects on the cardiovascular system, immune system, and central nervous system as well as the anti-diabetes and anti-cancer effects. These investigations were mainly derived from American ginseng studies. We also discuss evidence suggesting that chemical modifications of ginseng saponins would be a valuable approach to develop novel compounds in drug discovery.

Enzyme Hydrolysates of Ginseng Marc Polysaccharides Promote the Phagocytic Activity of Macrophages Via Activation of TLR2 and Mer Tyrosine Kinase

  • Seo, Jeong Yeon;Choi, Ji Won;Lee, Jae Yeon;Park, Young Shik;Park, Yong Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.860-873
    • /
    • 2018
  • Although ginseng marc is a by-product obtained during manufacturing of various commercial ginseng products and has been routinely discarded as a waste, it still contains considerable amounts of potential bioactive compounds, including saponins and polysaccharides. Previously, we reported that ginseng oligosaccharides derived from ginseng marc polysaccharides by enzymatic hydrolysis exert immunostimulatory activities in macrophages and these activated macrophages are in turn able to inhibit the growth of skin melanoma cells by inducing apoptosis. In the present study, a more detailed investigation of the immunostimulatory activity and underlying action mechanisms of an enzymatic hydrolysate (GEH) containing these oligosaccharides derived from ginseng marc polysaccharides was performed. The levels of proinflammatory cytokines and anti-inflammatory cytokines were measured in GEH-stimulated RAW264.7 macrophages using RT-PCR analysis and ELISA. The expression levels of Toll-like receptor 2 (TLR2) and TLR4, Dectin-1, and MerTK were measured by RT-PCR analysis or western blot analysis, and the phagocytic activities of GEH-challenged bone marrow-derived macrophages toward apoptotic Jurkat cells were assayed using fluorescence microscopy. GEH induced the production of both proinflammatory cytokines $TNF-{\alpha}$ and IL-6, and anti-inflammatory cytokine IL-10 in RAW 264.7 cells. The expression of the TLR2 and MerTK mRNAs was increased upon GEH treatment. Phagocytosis of apoptotic Jurkat cells was enhanced in GEH-treated macrophages. Based on the results, this enzymatic hydrolysate (GEH) containing oligosaccharides exerts immunostimulatory effects by maintaining the balance between M1 and M2 cytokines, facilitating macrophage activation and contributing to the efficient phagocytosis of apoptotic cells. Therefore, the GEH could be developed as value-added, health-beneficial food materials with immunostimulatory effects.

The Production of Anti-cancer Substances by in vitro Grown Cultures of Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Park, Kyung-Hwa;Kim, Yong-Hae;Yoon, Eui-Soo;Kang, Tae-Jin;Park, Kwang-Tae
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 1999년도 The 6th International Symposium on the Development of Anti-Cancer Resource from Plants
    • /
    • pp.46-57
    • /
    • 1999
  • Ginseng(Panax ginseng C.A. Meyer) is important medicinal plant but requires 4-year cultivation for root harvest because of slow growth. In contrast, ginseng callus and hairy roots grow vigorously and may Produce the same or more biologically active compounds for human health than natural ginseng roots. Therefore, ginseng callus and hairy roots can be used for commercial purposes. Polyacetylene, one of anti-cancer compounds in ginseng, was not detected in the callus cultured on the medium containing 2, 4-B, but cells derived from the callus growth was excellent, The ginseng calli cultured on the medium containing 2mg11 CPA and 0.05mg/1 BA was grown vigorously and produced panaxydol, one of ginseng polyacetylene. The biosynthesis of polyacetylene in callus was not affected by addition of NAA and sucrose in media. The SH medium was better than the MS medium for ginseng callus growth and biosynthesis of panaxydol. Another ginseng anti-cancer compounds, ginsenoside-Rg$_3$, Rh$_1$and Rh$_2$ were detected in ginseng hairy roots by heat treatment. Those of Panax ginseng were obtained after root disks of three-year old roots were infected with Agrobacterium rhizogenes Rl000 $A_4$T in dark condition after one month of culture. The optimum growth of hairy roots was achieved in the culture of 1/2 MS liquid medium in dark(22$^{\circ}C$) under 60 rpm gyratory shaking. Hairy roots grew well in 5 ι Erlenmeyer flasks, 1ι roller drums, 10ι jar-fermenters, and especially in 20ι air-lift .culture vessels. All heat treatments had remarkably different ginsenoside contents. Eleven ginsenosides were determined in heat treatment, eight in freeze dried hairy roots. Contents of ginsenoside-Rbl , Rb2, Rc, Rd. Re, Rf, and Rg$_1$tested in all heat treatments were less than those of freeze dried hairy roots. Contents of glnsenoside-Rg$_2$ in heat treatment for 1 hour at 105$^{\circ}C$ was 4.92mg/g dry wt, 3.9 times higher than 1.27 mg/g dry wt of freeze dried hairy roots. The optimum condition of heat treatment for the production of ginsenoside-Rg$_3$and Rhl was 2 hours at 105$^{\circ}C$, and ginsenoside content was 2.58mg/g dry wt and 3.62mg/g dry wt, respectively. The production of ginsenoside-Rh2 was the highest in heat treatment for 2 hours at 105$^{\circ}C$ among treatments examined, and ginsenoside-Rh$_2$content was 1.08mg/g dry wt.

  • PDF