DOI QR코드

DOI QR Code

Functional role of ginseng-derived compounds in cancer

  • Ahuja, Akash (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Ji Hye (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Jong-Hoon (Department of Physiology, College of Veterinary Medicine, Chonbuk National University) ;
  • Yi, Young-Su (Department of Pharmaceutical Engineering, Cheongju University) ;
  • Cho, Jae Youl (Department of Genetic Engineering, Sungkyunkwan University)
  • Received : 2016.12.30
  • Accepted : 2017.04.18
  • Published : 2018.07.15

Abstract

Ginseng is a natural product best known for its curative properties in diverse physiological processes such as cancer, neurodegenerative disorders, hypertension, and maintenance of hemostasis in the immune system. In previous decades, there have been some promising studies into the pharmacology and chemistry of ginseng components and the relationship between their structure and function. The emerging use of modified ginseng and development of new compounds from ginseng for clinical studies have been topics of study for many researchers. The present review deals with the anticancer, anti-inflammatory, antioxidant, and chemopreventive effects, and recent advances in microRNA technology related to red ginseng. The review also summarizes the current knowledge on the effect of ginsenosides in the treatment of cancer.

Keywords

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136(5):E359-86. https://doi.org/10.1002/ijc.29210
  2. von Kitzing E, Jonas P, Sakmann B. Europepmc_Citation. Res Vet Sci 1994;30:364-7.
  3. O'Brien TG, Simsiman RC, Boutwell RK. Induction of the polyamine-biosynthetic enzymes in mouse epidermis by tumor-promoting agents. Cancer Res 1975;35(7):1662-70.
  4. Wong AST, Che C-M, Leung K-W, Karmazyn M, Moey M, Gan XT, Liu J, Wang S, Liu H, Yang L, et al. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep [Internet] 2015;32(2):256-72. Available from: http://xlink.rsc.org/?DOI1/4C4NP00080C. https://doi.org/10.1039/C4NP00080C
  5. Qu C, Bai Y, Jin X, Wang Y, Zhang K, You J, Zhang H. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem [Internet] 2009;115(1):340-6. http://dx.doi.org/10.1016/j.foodchem.2008.11.079. Available from:.
  6. Wang A, Wang C-Z, Wu J-A, Osinski J, Yuan C-S. Determination of major ginsenosides in Panax quinquefolius (American ginseng) using high-performance liquid chromatography. Phytochem Anal 2005;16(4):272-7. https://doi.org/10.1002/pca.838
  7. Nag SA. Ginsenosides as anticancer agents: in vitro and in vivo activities, structureeactivity relationships, and molecular mechanisms of action. Front Pharmacol [Internet] 2012 February;3:25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22403544.
  8. Sun B-S, Gu L-J, Fang Z-M, Wang C, Wang Z, Lee M-R, Li Z, Li J-J, Sung C-K. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC-ELSD. J PharmBiomed Anal 2009 Aug;50(1):15-22.
  9. Xie YY, Luo D, Cheng YJ, Ma JF, Wang YM, Liang QL, Luo GA. Steaming-induced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MS n-based multicomponent quantification fingerprint. J Agric Food Chem 2012;60(33):8213-24. https://doi.org/10.1021/jf301116x
  10. Pyo MK, Choi S-H, Hwang SH, Shin T-J, Lee B-H, Lee S-M, Lim Y-H, Kim D-H, Nah S-Y. Novel glycolipoproteins from ginseng. J Ginseng Res 2011;35(1):92-103. https://doi.org/10.5142/jgr.2011.35.1.092
  11. Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee BH, Pyo MK, Lee JH, Kang J, Kim HJ, Park CW, et al. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein-coupled lysophosphatidic acidreceptorswith highaffinity.Mol Cells2012;33(2):151-62.
  12. Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid. Pharmacol Rev 2010;62(4):579-87. https://doi.org/10.1124/pr.110.003111
  13. Karmazyn M, Moey M, Gan XT. Therapeutic potential of ginseng in the management of cardiovascular disorders. Drugs 2011 Oct;71(15):1989-2008. https://doi.org/10.2165/11594300-000000000-00000
  14. Liu J, Wang S, Liu H, Yang L, Nan G. Stimulatory effect of saponin from Panax ginseng on immune function of lymphocytes in the elderly. Mech Ageing Dev 1995;83:43-53. https://doi.org/10.1016/0047-6374(95)01618-A
  15. Rai D, Bhatia G, Sen T, Palit G. Anti-stress effects of Ginkgo biloba and Panax ginseng: a comparative study. J Pharmacol Sci [Internet] 2003;93(4):458-64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14737017. https://doi.org/10.1254/jphs.93.458
  16. Oliynyk S, Oh S. Actoprotective effect of ginseng: improving mental and physical performance. J Ginseng Res 2013;37(2):144-66. https://doi.org/10.5142/jgr.2013.37.144
  17. Zhao R, McDaniel WF. Ginseng improves strategic learning by normal and brain-damaged rats. Neuroreport 1998 May;9(7):1619-24.
  18. Coleman CI, Hebert JH, Reddy P. Effects of Panax ginseng on stress. J Ginseng Res 2008;32(1):8-14. https://doi.org/10.5142/JGR.2008.32.1.008
  19. Reay JL, Scholey AB, Kennedy DO. Panax ginseng (G115) improves aspects of working memory performance and subjective ratings of calmness in healthy young adults. Hum Psychopharmacol 2010 Aug;25(6):462-71. https://doi.org/10.1002/hup.1138
  20. Shin HR, Kim JY, Yun TK, Morgan G, Vainio H. The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control [Internet] 2000;11(6):565-76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10880039. https://doi.org/10.1023/A:1008980200583
  21. Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res 2006;4(4):221-33. https://doi.org/10.1158/1541-7786.MCR-05-0261
  22. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  23. Kim VN, Nam JW. Genomics of microRNA. Trends Genet 2006;22:165-73. https://doi.org/10.1016/j.tig.2006.01.003
  24. Fiorucci G, Chiantore MV, Mangino G, Percario ZA, Affabris E, Romeo G. Cancer regulator MICRORNA: potential relevance in diagnosis, prognosis and treatment of cancer [Internet]. Curr Med Chem 2012;19:461-74. Available from: http://www.eurekaselect.com/node/76151/article. https://doi.org/10.2174/092986712798918798
  25. Chan LS, Yue PYK, Mak NK, Wong RNS. Role of MICRORNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur J Pharm Sci 2009;38(4):370-7. https://doi.org/10.1016/j.ejps.2009.08.008
  26. Chan LS, Yue PYK, Wong YY, Wong RNS. MicroRNA-15b contributes to ginsenoside-Rg1-induced angiogenesis through increased expression of VEGFR- 2. Biochem Pharmacol 2013;86(3):392-400. https://doi.org/10.1016/j.bcp.2013.05.006
  27. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1
  28. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer 2003;3(4):276-85. https://doi.org/10.1038/nrc1046
  29. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420(6917):860-7. https://doi.org/10.1038/nature01322
  30. Demaria S, Pikarsky E, Karin M, Coussens LM, Chen Y-C, El-Omar EM, Trinchieri G, Dubinett SM, Mao JT, Sazbo E, et al. Cancer and inflammation: promise for biologic therapy. J Immunother 2010;33(4):335-51. https://doi.org/10.1097/CJI.0b013e3181d32e74
  31. Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science [Internet] 2013;339(6117):286-91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23329041%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid1/4PMC3591506.
  32. Kim YJ, Chung JW, Lee SJ, Choi KS, Kim JH, Hahm KB. Progression from chronic atrophic gastritis to gastric cancer; tangle, toggle, tackle with Korea red ginseng. J Clin Biochem Nutr 2010;46(3):195-204. https://doi.org/10.3164/jcbn.10-03
  33. Jung JH, Kang IG, Kim DY, Hwang YJ, Kim ST. The effect of Korean red ginseng on allergic inflammation in a murine model of allergic rhinitis. J Ginseng Res 2013;37(2):167-75. https://doi.org/10.5142/jgr.2013.37.167
  34. Hong C-E, Lyu S-Y. Anti-inflammatory and anti-oxidative effects of Korean red ginseng extract in human keratinocytes. Immune Netw 2011;11:42-9. https://doi.org/10.4110/in.2011.11.1.42
  35. Yang Y, Yang WS, Yu T, Sung GH, Park KW, Yoon K, Son YJ, Hwang H, Kwak YS, Lee CM, et al. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. J Ethnopharmacol 2014;154(1):218-28. https://doi.org/10.1016/j.jep.2014.04.008
  36. Park JG, Kang WS, Park KT, Park DJ, Aravinthan A, Kim JH, Cho JY. Anticancer effect of joboksansam, Korean wild ginseng germinated from bird feces. J Ginseng Res 2016;40(3):304-8. https://doi.org/10.1016/j.jgr.2016.02.002
  37. Kim HS, Lim JM, Kim JY, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer 2016;138(6):1432-41. https://doi.org/10.1002/ijc.29879
  38. Choi K, Choi C. Proapoptotic ginsenosides compound K and Rh2 enhance Fasinduced cell death of human astrocytoma cells through distinct apoptotic signaling pathways. Cancer Res Treat 2009;41(1):36-44. https://doi.org/10.4143/crt.2009.41.1.36
  39. Kim M-Y, Yoo BC, Cho JY. Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line. J Ginseng Res [Internet] 2014;38(4):251-5. Available from: http://www.sciencedirect.com/science/article/pii/S1226845314000694. https://doi.org/10.1016/j.jgr.2014.06.003
  40. Mao Q, Zhang P-H, Wang Q, Li S-L. Ginsenoside F2 induces apoptosis in humor gastric carcinoma cells through reactive oxygen species-mitochondria pathway and modulation of ASK-1/JNK signaling cascade in vitro and in vivo. Phytomedicine 2014;21(4):515-22. https://doi.org/10.1016/j.phymed.2013.10.013
  41. Wang J-H, Nao J-F, Zhang M, He P. 20(s)-Ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. Tumor Biol [Internet] 2014;35(12):11985-94. http://dx.doi.org/10.1007/s13277-014-2497-5. Available from:.
  42. Zhao Q, Zheng X, Jiang J, Zhou H, Hu P. Determination of ginsenoside Rg3 in human plasma and urine by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 2010;878(24):2266-73. https://doi.org/10.1016/j.jchromb.2010.06.019
  43. Kim YJ, Choi WI, Jeon BN, Choi KC, Kim K, Kim TJ, Ham J, Jang HJ, Kang KS, Ko H, et al. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-${\beta}1$-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology 2014;322:23-33. https://doi.org/10.1016/j.tox.2014.04.002
  44. Yoo HH, Yokozawa T, Satoh A, Kang KS, Kim HY. Effects of ginseng on the proliferation of human lung fibroblasts. Am J Chin Med 2006;34(1):137-46. https://doi.org/10.1142/S0192415X06003709
  45. Liu T-GG, Huang Y, Cui D-DD, Huang X-BB, Mao S-HH, Ji L-LL, Song H-B, Yi C. Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice. BMC Cancer 2009;9(250):250. https://doi.org/10.1186/1471-2407-9-250
  46. Lee YJ, Lee S, Ho JN, Byun SS, Hong SK, Lee SE, Lee E. Synergistic antitumor effect of ginsenoside Rg3 and cisplatin in cisplatin-resistant bladder tumor cell line. Oncol Rep 2014;32(5):1803-8. https://doi.org/10.3892/or.2014.3452
  47. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-oka S, Samukawa K, Azuma I. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull [Internet] 1995;18(9):1197-202. https://doi.org/10.1248/bpb.18.1197
  48. Liu T, Zhao L, Zhang Y, Chen W, Liu D, Hou H, Ding L, Li X. Ginsenoside 20(S)-Rg3 targets HIF-$1{\alpha}$ to Block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells. PLoS One 2014;9(9):1-12.
  49. Zhang F, Li M, Wu X, Hu Y, Cao Y, Wang W, Xiang S, Li H, Jiang L, Tan Z, et al. 20 (S)-ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway. Drug Des Devel Ther 2015;9:3969-87.
  50. Xia T, Wang J-C, Xu W, Xu L-H, Lao C-H, Ye Q-X, Fang JP. 20(S)-Ginsenoside Rh2 induces apoptosis in human leukaemia Reh cells through mitochondrial signaling pathways. Biol Pharm Bull [Internet] 2014;37(2):248-54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24492721. https://doi.org/10.1248/bpb.b13-00667
  51. Bi WY, Fu BD, Shen HQ, Wei Q, Zhang C, Song Z, Qin QQ, Li HP, Lv S, Wu SC, et al. Sulfated derivative of 20(S)-Ginsenoside Rh2 inhibits inflammatory cytokines through MAPKs and NF-kappa B pathways in LPS-Induced RAW264.7 macrophages. Inflammation 2012;35(5):1659-68. https://doi.org/10.1007/s10753-012-9482-1
  52. Ko H, Kim YJ, Park JS, Park JH, Yang HO. Autophagy inhibition enhances apoptosis induced by ginsenoside Rk1 in hepatocellular carcinoma cells. Biosci Biotechnol Biochem 2009;73(10):2183-9. https://doi.org/10.1271/bbb.90250
  53. Zhang YX, Wang L, Xiao EL, Li SJ, Chen JJ, Gao B, Min GN, Wang ZP, Wu YJ. Ginsenoside-Rd exhibits anti-inflammatory activities through elevation of antioxidant enzyme activities and inhibition of JNK and ERK activation in vivo. Int Immunopharmacol 2013;17(4):1094-100. https://doi.org/10.1016/j.intimp.2013.10.013
  54. Li L, Wang Y, Qi B, Yuan D, Dong S. Suppression of PMA-induced tumor cell invasion and migration by ginsenoside Rg1 via the inhibition of $NF-{\kappa}B$-dependent MMP-9 expression. Ontol Reports 2014;32:1779-86. https://doi.org/10.3892/or.2014.3422
  55. Lin Y, Jiang D, Li Y, Han X, Yu D, Park JH, Jin YH. Effect of sun ginseng potentiation on epirubicin and paclitaxel-induced apoptosis in human cervical cancer cells. J Ginseng Res 2015;39(1):22-8. https://doi.org/10.1016/j.jgr.2014.08.001
  56. Lee JI, Ha YW, Choi TW, Kim HJ, Kim SM, Jang HJ, Choi JH, Choi MH, Chung BC, Sethi G, et al. Cellular uptake of ginsenosides in Korean white ginseng and red ginseng and their apoptotic activities in human breast cancer cells. Planta Med 2011;77(2):133-40. https://doi.org/10.1055/s-0030-1250160
  57. Xu F, Shang W, Yu J, Sun Q, Li M, Sun J. The antitumor activity study of ginsenosides and metabolites in lung cancer cell. Am J Transl Res 2016;8(4):1708-18.
  58. Kim MJ, Yun H, Kim DH, Kang I, Choe W, Kim SS, Ha J. Amp-activated protein kinase deter mines apoptotic sensitivity of cancer cells to ginsenoside-Rh2. J Ginseng Res [Internet] 2014;38(1):16-21. http://dx.doi.org/10.1016/j.jgr.2013.11.010. Available from:.
  59. Shi Q, Li J, Feng Z, Zhao L, Luo L, You Z, Li D, Xia J, Zuo G, Chen D, et al. Effect of ginsenoside Rh2 on the migratory ability of HepG2 liver carcinoma cells: recruiting histone deacetylase and inhibiting activator protein 1 transcription factors. Mol Med Rep 2014;10(4):1779-85. https://doi.org/10.3892/mmr.2014.2392
  60. Dong G, Jang EJ, Kang SH, Cho IJ, Park S, Kim SC, Kim YW. Red ginseng abrogates oxidative stress via mitochondria protection mediated by LKB1-AMPK pathway. BMC Complement Altern Med 2013;13:64. http://dx.doi.org/10.1186/1472-6882-13-64.
  61. Hwang JA, Hwang MK, Jang Y, Lee EJ, Kim JE, Oh MH, Shin DJ, Lim S, Ji G, Bode AM, et al. 20-O-b-d-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginseng, inhibits colon cancer growth by targeting TRPC channel-mediated calcium influx. J Nutr Biochem 2013;24(6):1096-104. https://doi.org/10.1016/j.jnutbio.2012.08.008
  62. Yuan HD, Quan HY, Zhang Y, Kim SH, Chung SH. 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep 2010;3(5):825-31. https://doi.org/10.3892/mmr.2010.328
  63. Kim DY, Park MW, Yuan HD, Lee HJ, Kim SH, Chung SH. Compound K induces apoptosis via CAMK-IV/AMPK pathways in HT-29 colon cancer cells. J Agric Food Chem 2009;57(22):10573-8. https://doi.org/10.1021/jf902700h
  64. Garbe C, Leiter U. Epidemiology of melanoma and nonmelanoma skin cancerthe role of sunlight. Adv Exp Med Biol 2008;624:89-103.
  65. Xiaoguang C, Hongyan L, Xiaohong L, Zhaodi F, Yan L, Lihua T, Rui H. Cancer chemopreventive and therapeutic activities of red ginseng. J Ethnopharmacol 1998;60(1):71-8. https://doi.org/10.1016/S0378-8741(97)00133-5
  66. Sharma J, Goyal PK. Chemoprevention of chemical-induced skin cancer by Panax ginseng root extract. J Ginseng Res [Internet] 2015;39(3):265-73. http://dx.doi.org/10.1016/j.jgr.2015.01.005. Available from:.
  67. Kumar A, Kumar M, Panwar M, Samarth RM, Park TY, Park MH, Kimura H. Evaluation of chemopreventive action of Ginsenoside Rp1. Biofactors 2006;26:29-43. https://doi.org/10.1002/biof.5520260104
  68. Choi CH, Kang G, Min YD. Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Planta Med 2003;69(3):235-40. https://doi.org/10.1055/s-2003-38483
  69. Kim SW, Kwon HY, Chi DW, Shim JH, Park JD, Lee YH, Pyo S, Rhee DK. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg3. Biochem Pharmacol 2003;65(1):75-82. https://doi.org/10.1016/S0006-2952(02)01446-6
  70. Li N, Wang D, Ge G, Wang X, Liu Y, Yang L. Ginsenoside metabolites inhibit Pglycoprotein in vitro and in situ using three absorption models. Planta Med 2014;80(4):290-6. https://doi.org/10.1055/s-0033-1360334
  71. Yuan CS, Wei G, Dey L, Karrison T, Nahlik L, Maleckar S, Kasza K, Ang-Lee M, Moss J. Brief communication: American ginseng reduces warfarin's effect in healthy patients. A randomized, controlled trial. Ann Intern Med 2004;141(1):23-7. https://doi.org/10.7326/0003-4819-141-1-200407060-00011
  72. Jung CH, Seog HM, Choi IW, Park MW, Cho HY. Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT - Food Sci Technol 2006;39(3):266-74. https://doi.org/10.1016/j.lwt.2005.01.004
  73. Pan HY, Qu Y, Zhang JK, Kang TG, Dou DQ. Antioxidant activity of ginseng cultivated under mountainous forest with different growing years. J Ginseng Res 2013;37(3):355-60. https://doi.org/10.5142/jgr.2013.37.355
  74. Wei X, Su F, Su X, Hu T, Hu S. Stereospecific antioxidant effects of ginsenoside Rg3 on oxidative stress induced by cyclophosphamide in mice. Fitoterapia 2012;83(4):636-42. https://doi.org/10.1016/j.fitote.2012.01.006
  75. Lu J-M, Weakley SM, Yang Z, Hu M, Yao Q, Chen C. Ginsenoside Rb1 directly scavenges hydroxyl radical and hypochlorous acid. Curr Pharma Des 2012;18:6339-47. https://doi.org/10.2174/138161212803832254
  76. Lo Y-T, Tsai Y-H, Wu S-J, Chen J-R, Chao JC-J. Ginsenoside Rb1 inhibits cell activation and liver fibrosis in rat hepatic stellate cells. J Med Food 2011;14(10):1135-43. https://doi.org/10.1089/jmf.2010.1485
  77. Liu Q, Kou JP, Yu BY. Ginsenoside Rg1 protects against hydrogen peroxideinduced cell death in PC12 cells via inhibiting $NF-{\kappa}B$ activation. Neurochem Int 2011;58(1):119-25. https://doi.org/10.1016/j.neuint.2010.11.004
  78. Kwok HH, Ng WY, Yang MSM, Mak NK, Wong RNS, Yue PYK. The ginsenoside protopanaxatriol protects endothelial cells from hydrogen peroxide-induced cell injury and cell death by modulating intracellular redox status. Free Radic Biol Med 2010;48(3):437-45. https://doi.org/10.1016/j.freeradbiomed.2009.11.013
  79. Lee LS, Wise SD, Chan C, Parsons TL, Flexner C, Lietman PS. Possible differential induction of phase 2 enzyme and antioxidant pathways by american ginseng, Panax quinquefolius. J Clin Pharmacol 2008;48(5):599-609. https://doi.org/10.1177/0091270008314252
  80. Saw CLL, Yang AY, Cheng DC, Boyanapalli SSS, Su ZY, Khor TO, Gao S, Wang J, Jiang ZH, Tony Kong AN, et al. Pharmacodynamics of ginsenosides: antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem Res Toxicol 2012;25(8):1574-80. https://doi.org/10.1021/tx2005025
  81. Bak M-J, Jun M, Jeong W-S. Antioxidant and hepatoprotective effects of the red ginseng essential oil in H(2)O(2)-treated hepG2 cells and CCl(4)-treated mice. Int J Mol Sci 2012;13(2):2314-30. https://doi.org/10.3390/ijms13022314
  82. Chae S, Kang KA, Chang WY, Kim MJ, Lee SJ, Lee YS, Kim HS, Kim DH, Hyun JW. Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. J Agric Food Chem 2009;57(13):5777-82. https://doi.org/10.1021/jf900331g
  83. Kim AD, Kang KA, Kim HS, Kim DH, Choi YH, Lee SJ, Kim HS, Hyun JW. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis 2013;4:e750. https://doi.org/10.1038/cddis.2013.273
  84. Wang P, Cui J, Du X, Yang Q, Jia C, Xiong M, Yu X, Li L, Wang W, Chen Y, et al. Panax notoginseng saponins (PNS) inhibits breast cancer metastasis. J Ethnopharmacol 2014;154(3):663-71. https://doi.org/10.1016/j.jep.2014.04.037
  85. Yang Q, Wang X, Cui J, Wang P, Xiong M, Jia C, Lui L, Ning B, Li L, Wang W, et al. Bidirectional regulation of angiogenesis and miR-18a expression by PNS in the mouse model of tumor complicated by myocardial ischemia. BMC Complement Altern Med 2014;14:183. https://doi.org/10.1186/1472-6882-14-183
  86. Zhang X, Shi M, Ye R, Wang W, Liu X, Zhang G, Han J, Zhang Y, Wang B, Zhao J, et al. Ginsenoside Rd attenuates tau protein phosphorylation via the PI3K/AKT/GSK-3b pathway after transient forebrain ischemia. Neurochem Res 2014;39(7):1363-73. https://doi.org/10.1007/s11064-014-1321-3
  87. Zeng X, Li J, Li Z. Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway. Int J Clin Exp Med 2015;8(8):14497-504.
  88. Yoon JH, Choi YJ, Cha SW, Lee SG. Anti-metastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation. Phytomedicine 2012;19(3-4):284-92. https://doi.org/10.1016/j.phymed.2011.08.069
  89. Wang P, Du X, Xiong M, Cui J, Yang Q, Wang W, Chen Y, Zhang T. Ginsenoside Rd attenuates breast cancer metastasis implicating derepressing microRNA-18a-regulated Smad2 expression. Sci Rep [Internet] 2016 March;6:33709. Available from: http://www.nature.com/articles/srep33709. https://doi.org/10.1038/srep33709
  90. Wu N, Wu G, Hu R, Li M, Feng H. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128. Acta Pharmacol Sin 2011;32(3):345-53. https://doi.org/10.1038/aps.2010.220
  91. Jiao X, Zhao L, Ma M, Bai X, He M, Yan Y, Wang Y, Chen Q, Zhao X, Zhou M, et al. MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 2013;139(3):717-30. https://doi.org/10.1007/s10549-013-2607-x
  92. Wen X, Zhang H Da, Zhao L, Yao YF, Zhao JH, Tang JH. Ginsenoside Rh2 differentially mediates microRNA expression to prevent chemoresistance of breast cancer. Asian Pacific J Cancer Prev 2015;16(3):1105-9. https://doi.org/10.7314/APJCP.2015.16.3.1105
  93. Keung M-H, Chan L-S, Kwok H-H, Wong RN-S, Yue PY-K. Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression. J Ginseng Res 2016;40(2):151-9. https://doi.org/10.1016/j.jgr.2015.07.002
  94. Zeng D, Wang J, Kong P, Chang C, Li J, Li J. Ginsenoside Rg3 inhibits HIF-$1{\alpha}$ and VEGF expression in patient with acute leukemia via inhibiting the activation of PI3K/Akt and ERK1/2 pathways. Int J Clin Exp Pathol 2014;7(5):2172-8.
  95. Nah SY. Ginseng ginsenoside pharmacology in the nervous system: involvement in the regulation of ion channels and receptors. Front Physiol 2014 March;5:1-13.
  96. Kim S, Kim MS, Park K, Kim HJ, Jung SW, Nah S-Y, Han JS, Chung CH. Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration. J Ginseng Res 2016;40(1):55-61. https://doi.org/10.1016/j.jgr.2015.05.001
  97. Park H, Kim S, Rhee J, Kim H-J, Han J-S, Nah S-Y, Chung CH. Synaptic enhancement induced by gintonin via lysophosphatidic acid receptor activation in central synapses. J Neurophysiol 2015;113(5):1493-500. https://doi.org/10.1152/jn.00667.2014
  98. Hwang SH, Lee BH, Kim HJ, Cho HJ, Shin HC, Im KS, Choi SH, Shin TJ, Lee SM, Nam SW, et al. Suppression of metastasis of intravenously-inoculated B16/F10 melanoma cells by the novel ginseng-derived ingredient, gintonin: involvement of autotaxin inhibition. Int J Oncol 2013;42(1):317-26. https://doi.org/10.3892/ijo.2012.1709
  99. Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang J, Kim H-J, Kwon S-H, Jang C-H, Lee J-H, et al. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates alzheimer's disease-related neuropathies: involvement of non-amyloidogenic processing. J Alzheimer's Dis 2012;31(1):207-23. https://doi.org/10.3233/JAD-2012-120439

Cited by

  1. Bar-HRM: a reliable and fast method for species identification of ginseng (Panax ginseng, Panax notoginseng, Talinum paniculatum and Phytolacca Americana) vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7660
  2. Aidi Injection, a Traditional Chinese Medicine Injection, Could Be Used as an Adjuvant Drug to Improve Quality of Life of Cancer Patients Receiving Chemotherapy: A Propensity Score Matching Analysis vol.18, pp.None, 2018, https://doi.org/10.1177/1534735418810799
  3. Protium javanicum Burm. Methanol Extract Attenuates LPS-Induced Inflammatory Activities in Macrophage-Like RAW264.7 Cells vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/2910278
  4. Trichosanthes tricuspidata Lour. Methanol Extract Exhibits Anti-Inflammatory Activity by Targeting Syk, Src, and IRAK1 Kinase Activity vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6879346
  5. Metabolic profiles of Xiao Chai Hu Tang in mouse plasma, bile and urine by the UHPLC–ESI-Q-TOF/MS technique vol.1128, pp.None, 2018, https://doi.org/10.1016/j.jchromb.2019.121767
  6. Inhibition of human carboxylesterases by ginsenosides: structure–activity relationships and inhibitory mechanism vol.14, pp.None, 2018, https://doi.org/10.1186/s13020-019-0279-0
  7. Selection and validation of reference genes desirable for gene expression analysis by qRT-PCR in MeJA-treated ginseng hairy roots vol.14, pp.12, 2019, https://doi.org/10.1371/journal.pone.0226168
  8. Enhanced macrophage uptake of radiolabeled liposome triggered by ginseng extracts vol.5, pp.2, 2018, https://doi.org/10.22643/jrmp.2019.5.2.113
  9. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/6565396
  10. Till 2018: a survey of biomolecular sequences in genus Panax vol.44, pp.1, 2018, https://doi.org/10.1016/j.jgr.2019.06.004
  11. Regulation of 8-Hydroxydaidzein in IRF3-Mediated Gene Expression in LPS-Stimulated Murine Macrophages vol.10, pp.2, 2018, https://doi.org/10.3390/biom10020238
  12. Analysis and Identification of Active Compounds from Salviae miltiorrhizae Radix Toxic to HCT-116 Human Colon Cancer Cells vol.10, pp.4, 2018, https://doi.org/10.3390/app10041304
  13. SQUAMOSA Promoter Binding Protein-Like ( SPL ) Gene Family: TRANSCRIPTOME-Wide Identification, Phylogenetic Relationship, Expression Patterns and Network Interaction Analysis in Panax ginseng C. A. vol.9, pp.3, 2018, https://doi.org/10.3390/plants9030354
  14. Ginsenoside CK induces apoptosis and suppresses proliferation and invasion of human osteosarcoma cells through the PI3K/mTOR/p70S6K1 pathway vol.43, pp.3, 2018, https://doi.org/10.3892/or.2020.7460
  15. Biocatalytic Synthesis of a Novel Bioactive Ginsenoside Using UDP-Glycosyltransferase from Bacillus subtilis 168 vol.10, pp.3, 2020, https://doi.org/10.3390/catal10030289
  16. Understanding Thai consumer attitudes and expectations of ginseng food products vol.35, pp.2, 2020, https://doi.org/10.1111/joss.12553
  17. Protein Arginine Methyltransferase 1 (PRMT1) Selective Inhibitor, TC-E 5003, Has Anti-Inflammatory Properties in TLR4 Signaling vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093058
  18. Panax quinquefolium L. Ginsenosides from Hairy Root Cultures and Their Clones Exert Cytotoxic, Genotoxic and Pro-Apoptotic Activity towards Human Colon Adenocarcinoma Cell Line Caco-2 vol.25, pp.9, 2018, https://doi.org/10.3390/molecules25092262
  19. Biotransformation of ginsenoside Rb1 with wild Cordyceps sinensis and Ascomycota sp. and its antihyperlipidemic effects on the diet‐induced cholesterol of zebrafish vol.44, pp.6, 2018, https://doi.org/10.1111/jfbc.13192
  20. Construction of Ginsenoside Nanoparticles with pH/Reduction Dual Response for Enhancement of Their Cytotoxicity Toward HepG2 Cells vol.68, pp.32, 2018, https://doi.org/10.1021/acs.jafc.0c03698
  21. Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer vol.20, pp.5, 2018, https://doi.org/10.3892/ol.2020.12001
  22. Ginseng attenuates fipronil-induced hepatorenal toxicity via its antioxidant, anti-apoptotic, and anti-inflammatory activities in rats vol.27, pp.36, 2018, https://doi.org/10.1007/s11356-020-10306-0
  23. 토양유기물 함량이 인삼근의 endosulfan 흡수이행에 미치는 영향 vol.63, pp.4, 2018, https://doi.org/10.3839/jabc.2020.052
  24. Protective effect of panaxydol against repeated administration of aristolochic acid on renal function and lipid peroxidation products via activating Keap1‐Nrf2/ARE pathway in rat kidney vol.35, pp.1, 2018, https://doi.org/10.1002/jbt.22619
  25. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases vol.41, pp.1, 2018, https://doi.org/10.1002/med.21743
  26. Effects of immersion in fermented tea liquid and steam treatments on physicochemical properties and ginsenoside profiles of Korean ginseng vol.45, pp.1, 2018, https://doi.org/10.1111/jfpp.15050
  27. Aidi Injection as Adjuvant Drug Combined with Chemotherapy in Treatment of Breast Cancer: A Systematic Meta-Analysis vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8832913
  28. Strategies for Remodeling the Tumor Microenvironment Using Active Ingredients of Ginseng-A Promising Approach for Cancer Therapy vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.797634
  29. DNA or Protein Methylation-Dependent Regulation of Activator Protein-1 Function vol.10, pp.2, 2021, https://doi.org/10.3390/cells10020461
  30. Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020198
  31. Out‐of‐the‐Box Nanocapsules Packed with On‐Demand Hydrophobic Anticancer Drugs for Lung Targeting, Esterase Triggering, and Synergy Therapy vol.10, pp.8, 2018, https://doi.org/10.1002/adhm.202001803
  32. Inhibitory Effect of pH-Responsive Nanogel Encapsulating Ginsenoside CK against Lung Cancer vol.13, pp.11, 2018, https://doi.org/10.3390/polym13111784
  33. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action vol.169, pp.None, 2021, https://doi.org/10.1016/j.phrs.2021.105647
  34. Evaluation of the Protective Effect of Red Ginseng on Lipid Profile, Endothelial and Oxidative Damage after Splenectomy in Rats vol.6, pp.2, 2018, https://doi.org/10.25000/acem.952140
  35. Evaluation of the Protective Effect of Red Ginseng on Lipid Profile, Endothelial and Oxidative Damage after Splenectomy in Rats vol.6, pp.2, 2018, https://doi.org/10.25000/acem.952140
  36. Rh2-enriched Korean ginseng (Ginseng Rh2+) inhibits tumor growth and development of metastasis of non-small cell lung cancer vol.12, pp.17, 2018, https://doi.org/10.1039/d1fo00643f
  37. Cissus subtetragona Planch. Ameliorates Inflammatory Responses in LPS-induced Macrophages, HCl/EtOH-induced Gastritis, and LPS-induced Lung Injury via Attenuation of Src and TAK1 vol.26, pp.19, 2021, https://doi.org/10.3390/molecules26196073
  38. Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics vol.14, pp.10, 2018, https://doi.org/10.3390/ph14101010
  39. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets vol.26, pp.23, 2018, https://doi.org/10.3390/molecules26237134
  40. 20(S)-Ginsenoside Rh2-induced apoptosis and protective autophagy in cervical cancer cells by inhibiting AMPK/mTOR pathway vol.86, pp.1, 2021, https://doi.org/10.1093/bbb/zbab189