• Title/Summary/Keyword: Gifted students class

Search Result 255, Processing Time 0.024 seconds

Item Analysis for Selecting Science Gifted Middle School Students at Physics Class (과학영재교육원 중학교 물리 전공 선발 문항 분석)

  • Lim, Chun-Woo;Park, Yune-Bae
    • Journal of Gifted/Talented Education
    • /
    • v.20 no.1
    • /
    • pp.61-77
    • /
    • 2010
  • The purpose of this study was to analyze the items that were used in entrance examination for science gifted education center for middle school students by using content analysis and classical item analysis. In content analysis, objective type items exhibited mathematics and physics were dominant. Science giftedness & creativity items were dominant. And essay type items consisted of physics items, have evaluated creative problem solving ability. Item difficulty and discrimination index, on the whole, were appropriate. Comparing with objective type, essay type has higher discrimination index. In correlation analysis between total score and score of each type of items, total score has the highest correlation with essay type items and science giftedness & creativity. It was recommended that mathematics, physics and chemistry items with focusing giftedness & creativity could give some implications for future selection methods of science gifted education center.

An Analysis of the Information Curriculum of the University-affiliated Science Gifted Education Center (대학부설 과학영재교육원의 정보영역 교육과정 분석)

  • Lee, Jaeho;Jang, Junhyung;Jeong, Hongwon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.891-898
    • /
    • 2021
  • The purpose of this study is to analyze the curriculum of the University-affiliated Science Gifted Education Center from 2018 to 2020 to analyze the proportion of the information area in the total class and the contents of the class, thereby confirming the trend change in the information area. After analyzing the number of hours that information education occupies in the total number of class hours, information education was classified into three categories: computer use education, SW coding education, and SW convergence education, and the curriculum was analyzed in detail. The analysis results are summarized as follows. First, the proportion of information education in total education is gradually increasing compared to 2018. Second, the proportion of computer utilization education in information education is relatively decreasing, and SW coding education and SW convergence education are expanding. Considering that the field of information education has been expanded in various forms, more systematic information education will be provided to students in the future and its usefulness will increase rapidly.

Understanding Problem-Solving Type Inquiry Learning and it's Effect on the Improvement of Ability to Design Experiments: A Case Study on Science-Gifted Students (문제해결형 탐구학습에 대한 인식과 학습이 실험 설계 능력에 미친 효과 : 과학 영재학생들에 대한 사례 연구)

  • Ju, Mi-Na;Kim, Hyun-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.2
    • /
    • pp.425-443
    • /
    • 2013
  • We developed problem-solving type inquiry learning programs reflecting scientists' research process and analyzed the activities of science-gifted high school students, and the understanding and the effects of the programs after implementation in class. For this study, twelve science-gifted students in the 10th grade participated in the program, which consisted of three different modules - making a cycloidal pendulum, surface growth, and synchronization using metronomes. Diet Cola Test (DCT) was used to find out the effect on the improvement of the ability to design experiments by comparing pre/post scores, with a survey and an interview being conducted after the class. Each module consisted of a series of processes such as questioning the phenomenon scientifically, designing experiments to find solutions, and doing activities to solve the problems. These enable students to experience problem-solving type research process through the program class. According to this analysis, most students were likely to understand the characteristics of problem-solving type inquiry learning programs reflecting the scientists' research process. According to the students, there are some differences between this program class and existing school class. The differences are: 'explaining phenomenon scientifically,' 'designing experiments for themselves,' and 'repeating the experiments several times.' During the class students have to think continuously, design several experiments, and carry them out to solve the problems they found at first. Then finally, they were able to solve the problems. While repeating this kind of activities they have been able to experience the scientists' research process. Also, they showed a positive attitude toward the scientists' research by understanding problem-solving type research process. These problem-solving type inquiry learning programs seem to have positive effects on students in designing experiments and offering the opportunity for critical argumentation on the causes of the phenomena. The results of comparing pre/post scores for DCT revealed that almost every student has improved his/her ability to design experiments. Students who were accustomed to following teacher's instructions have had difficulty in designing the experiments for themselves at the beginning of the class, but gradually, they become used to doing it through the class and finally were able to do it systematically.

The Effects of Analogy-Generating in Small Group on Saturated Solution in Elementary Science-Gifted Education (초등 과학영재교육에서 포화용액 개념에 대한 소집단 비유 만들기의 효과)

  • Yoon, Jin-A;Kang, Hun-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.509-518
    • /
    • 2011
  • In this study, we investigated the effects of analogy-generating in small group in elementary science-gifted education upon the types and the mapping errors of student-generated analogies, and the perceptions of the instruction. Fifth graders (N=37) at two science-gifted classes in two elementary schools were selected and assigned to individualistic analogygenerating (IA, n=19) and pair analogy-generating (PA, n=18) groups. After the students of each group performed the experiment and were taught about 'saturated solution' concept in the first class, they administered the test on the self-generating analogies on the concept in the second class. The students in the PA group also administered the test on perceptions of analogy-generating in small group and some of them were interviewed deeply. The results revealed that the students in the PA group made more verbal/pictorial, structural/functional, enriched, and higher systematic analogies than those in the IA group. However, there were little difference between the two groups in the subcategories of artificiality (artificial and everyday) and abstraction (abstract and concrete). The students in the PA group fewer mapping errors than those in the IA group. Many students in PA group perceived the analogy-generating in small group positively upon various cognitive and motivational aspects. However, they also pointed a few disadvantages of the activity. Educational implications of these findings are discussed.

Effects of Science Gifted Program on Scientific Creativity and Recognition of that Program for the Elementary School Students (과학영재교육 프로그램이 초등영재학생들의 과학창의성과 프로그램에 대한 인식에 미치는 영향)

  • Shin, Ae-Kyung;Kang, Min-Seog;Kim, Beom-Ki
    • Journal of Science Education
    • /
    • v.35 no.1
    • /
    • pp.23-33
    • /
    • 2011
  • The purposes of this study were to analyze the effects on scientific creativity of the Science Gifted Program, to survey recognition of gifted learners on the Program, and to obtain implications for the development direction of guidance program. The subjects of this study were 20 persons of the class for the gifted in an elementary school science, which belonged to Education Institute for the Gifted, Office of Education in Jeju city. The Science Gifted Program were applied during 28 times. The effects of the program were analyzed using the scientific creativity test, recognition questionnaire and interview of the Science Gifted Program. The results of this study were as follows. First, after applying Science Gifted Program, the scientific creativity of the gifted in science was enhanced. Especially, fluency was enhanced most remarkably. Second, after applying Science Gifted Program, students stated that they had the positive feeling about this program. The suggestions of results of recognition questionnaire of the Science Gifted Program were as follows. First, the Science Gifted Program must include experiment and research of subject. Second, it is necessary to guide concretely of the learning method before beginning of the Science Gifted Program. Third, it is necessary to control content level and quantity of the task for the student's easy comprehension.

  • PDF

An Activity Theoretical Analysis on the Instrumenatal Orchestration of the Teacher: Focusing on the Calculator-Based Classroom Activities of Gifted Elementary Math Students (교사의 도구적 오케스트레이션에 관한 활동이론적 분석: 계산기 기반 초등 수학 영재 수업을 중심으로)

  • Kang, Young Ran;Cho, Cheong Soo
    • School Mathematics
    • /
    • v.17 no.2
    • /
    • pp.273-287
    • /
    • 2015
  • The purpose of this study was to obtain a deeper understanding of didactic processing in the class that unified with engineering by analyzing on the types of the teacher's instumental orchestration and schematizing it as an activity system. In order to do so, a qualitative study of a 5th grade class for math-gifted students in Y elementary school with ethnography was conducted. Interviews with the students were held and various document data were collected during the participational observation of the class. The collected qualitative data were gone through the analytical induction while the instrumental orchestration of Drijvers, Boon, Doorman, Reed, & Gravemeijer as well as the secondgeneration activity theory of Engestrom were using as the frame of conceptional reference. According to the result of this study, there exist 4 types, such as 'technical demo' 'link screen board', 'detection-exploring small group' and 'explain the screen and technical demo'.

Comparison of Components of Self-directed Learning Discribed in the Students' Evaluation of Explicit Instruction and Implicit Instruction Regarding Self-directed Learning (자기주도학습의 명시적 수업과 암묵적 수업에 대한 과학영재중학생의 평가에서 관찰되는 자기주도학습 요소 비교)

  • Choe, Seung-Urn;Kim, Eun-Sook
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.6
    • /
    • pp.1077-1098
    • /
    • 2013
  • Science gifted students enrolled in a program, where classes had either explicit or implicit instruction about self-directed learning, were asked to write what was satisfying after each class. This process was part of the evaluation of the program. Students' descriptions related to self-directed learning are compared in these two classes, one with explicit instruction and the other with implicit instruction. First, most of the components related to self-directed learning, which were reported in the previous research articles, were mentioned in students evaluation. If there was any specific description regarding what was satisfying, there were components of self-directed learning. Students descriptions were consistent with list of self-directed learning components, which was constructed based on the previous research. Therefore it may be concluded that students recognized most of the reported self-directed learning components and satisfied with them. Second, There were differences in the evaluation of two types of classes. The evaluation of class with explicit instruction contained more self-directed learning components more frequently. For example, students worked in small groups in both classes. However more students mentioned small groups in classes with explicit instruction. As a result the explicit instruction appears to be more effective for students to recognize the self-directed learning components. However some of the components mentioned in classes with implicit instruction were not mentioned in the classes with explicit instruction. Therefore classes with explicit and implicit instructions are complimentary with each other and both instructions are necessary.

A Case Study on Instruction for Mathematically Gifted Children through The Application of Open-ended Problem Solving Tasks (개방형 과제를 활용한 수학 영재아 수업 사례 분석)

  • Park Hwa-Young;Kim Soo-Hwan
    • Communications of Mathematical Education
    • /
    • v.20 no.1 s.25
    • /
    • pp.117-145
    • /
    • 2006
  • Mathematically gifted children have creative curiosity about novel tasks deriving from their natural mathematical talents, aptitudes, intellectual abilities and creativities. More effect in nurturing the creative thinking found in brilliant children, letting them approach problem solving in various ways and make strategic attempts is needed. Given this perspective, it is desirable to select open-ended and atypical problems as a task for educational program for gifted children. In this paper, various types of open-ended problems were framed and based on these, teaming activities were adapted into gifted children's class. Then in the problem solving process, the characteristic of bright children's mathematical thinking ability and examples of problem solving strategies were analyzed so that suggestions about classes for bright children utilizing open-ended tasks at elementary schools could be achieved. For this, an open-ended task made of 24 inquiries was structured, the teaching procedure was made of three steps properly transforming Renzulli's Enrichment Triad Model, and 24 periods of classes were progressed according to the teaching plan. One period of class for each subcategories of mathematical thinking ability; ability of intuitional insight, systematizing information, space formation/visualization, mathematical abstraction, mathematical reasoning, and reflective thinking were chosen and analyzed regarding teaching, teaming process and products. Problem solving examples that could be anticipated through teaching and teaming process and products analysis, and creative problem solving examples were suggested, and suggestions about teaching bright children using open-ended tasks were deduced based on the analysis of the characteristic of tasks, role of the teacher, impartiality and probability of approaching through reflecting the classes. Through the case study of a mathematics class for bright children making use of open-ended tasks proved to satisfy the curiosity of the students, and was proved to be effective for providing and forming a habit of various mathematical thinking experiences by establishing atypical mathematical problem solving strategies. This study is meaningful in that it provided mathematically gifted children's problem solving procedures about open-ended problems and it made an attempt at concrete and practical case study about classes fur gifted children while most of studies on education for gifted children in this country focus on the studies on basic theories or quantitative studies.

  • PDF

Development and Application of the STEAM Teaching-Learning Program in 'Earth & Moon' Unit for Science Gifted Elementary School Students (초등과학영재를 위한 '지구와 달' 단원의 STEAM 교수·학습 프로그램 개발 및 적용)

  • Jeong, Sang Yun;Sohn, Jungjoo
    • Journal of Science Education
    • /
    • v.37 no.2
    • /
    • pp.359-373
    • /
    • 2013
  • This study is aimed to find out the effect after the development and application of the STEAM teaching-learning program for science gifted elementary school students. The validity of the developed program was verified by three experts. The program consists of a total of eight classes and eight days were carried out. Recorded lessons, class observation journal, and recorded interview transcription data were measured and then analyzed the effect. 'Present situation' is a very important step was confirmed. The degree of understanding of a given situation affected to task commitment, the formation of scientific concepts, creative design and deliverable.

  • PDF

Qualitative Analysis of IT fused Mentorship Project Performance with Gifted Secondary Students in Information Science Class (정보 영재반 중학생들의 IT 융합 사사 프로젝트 수행에 관한 질적 분석)

  • Jun, Youngcook
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.4
    • /
    • pp.45-58
    • /
    • 2016
  • This paper tried to analyze cases of one year team-based project of gifted students who spent two year programs in a math-IT integrated class as part of formative evaluation and extracted the factors associated with future enhancement for the program. The researcher as an advisory professor tried to guide the students as minimally as possible considering their levels of IT skills so that they could self-directedly perform the IT-fused project on a team basis. The data collection included documents, annual report, photos, video, artifacts and interview data with the students for the whole team project carried out between February and December, 2015. The overall pattern of the project activities has been stabilized in the middle of the course compared to the initial stages of brainstorming and design work even though the students revealed the differences of their programming skills and preferences toward the project theme. Their project outcomes were qualitatively analyzed according to the 9 steps of R&E model and has shown individual differences according to low, middle and high level. At the end, the analysis suggested several implications for further improvement of the mentorship program.