• Title/Summary/Keyword: Geumsan perilla leaves

Search Result 6, Processing Time 0.029 seconds

Quality Characteristics and Flavor Compounds of Geumsan Perilla Leaves Cultivated in Greenhouse and Field (온실재배와 노지재배한 금산 깻잎의 품질 특성과 향기성분)

  • 현광욱;구교철;장정호;이재곤;김미리;이종수
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • Quality and flavor compounds of perilla loaves cultivated in greenhouse(May) and field (August) in Geumsan province were investigated and compared. All perilla leaves contained 4.0% crude protein and 0.8% crude lipid. Crude flavonoid contents of perilla leaves cultivated in greenhouse and field showed 25.2% and 26.5%, respectively and each crude saponin content was 2.7% and 2.8%. Pretense activity were showed 11.8 unit in ethanol extracts and 7.1 unit in water extracts of perilla leaves cultivated in field. Hardness and chewness of bottom parts of field-perilla leaves were higher than those of top and middle part, whereas the cohesiveness of top parts and middle parts of perilla leaves were higher than that of bottom part. Furthermore, texture properties of greenhouse-perilla leaves were similar with those of field-perilla leaves except chewness. Nine kinds of flavor compounds such as 1-octen-3-ol, linalool, ${\beta}$-caryophyllene, ${\alpha}$-caryophylene, ${\alpha}$-farnesene, perilla ketone, nerolidol, eugenol, ${\alpha}$-cadinol were identified in greenhouse-perilla and field-perilla leaves, showing that main flavor compound was perilla ketone.

Physiological Functionality in Geumsan Perilla Leaves from Greenhouse and Field Cultivation (온실재배와 노지재배한 금산 깻잎의 생리기능성)

  • Hyun, Kwang-Wook;Kim, Jae-Ho;Song, Ki-Jin;Lee, Jong-Bok;Jang, Jung-Ho;Kim, Young-Sun;Lee, Jong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.975-979
    • /
    • 2003
  • Perilla leaves cultivated in greenhouses (Jan., May) and in the fields (Aug.) of Geumsan province were investigated for their extract yields and physiological functionalities. The yield was highest in 30% ethanol extracts of the August perilla leaves. The highest fibrinolytic activity (8.2 U) was observed in 30% ethanol extracts of the May perilla leaves, while the HMG-CoA reductase inhibition level, which is related to the inhibition of cholesterol biosynthesis, was 83% in water extracts of the August perilla leaves. Anti-hypertensive ACE inhibitory activity was 64.5% in the water extracts of the January perilla leaves, and antioxidative electron donating ability was the highest (69%) in 30% ethanol extracts of the August perilla leaves. Elastase inhibitory activity, which is related to the inhibition of skin aging, was highest (47.5%) in 30% ethanol extracts of the May perilla leaves. However, SOD-like activity, nitrite scavenging activity, and tyrosinase inhibitory activity were not detected were very weak in all samples.

Changes of Physical Characteristics of Chubu Perilla Leaves(Penilla Frutescens var. Japonica HARA)during Different Storage Conditions (저장조건에 따른 추부 깻잎의 물리적 특성 분석)

  • Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.410-417
    • /
    • 2017
  • The physical properties of perilla leaves cultivated in Geumsan province were analyzed according storage conditions. The a/b values of perilla leaves increased with increasing storage period. Electronic nose composed of 12 different metal oxide sensors was used to differentiate flavors of perilla leaves. Sensitivities(delta $R_{gas}/R_{air}$) of sensors from electronic nose were obtained by principal compound analysis(PCA). Proportion of the first principal component was 93.07% at $25^{\circ}C$ and 97.81% at $4^{\circ}C$, respectively. In our result, flavor patterns of perilla leaves can be differentiated according to the storage temperature.

Incidence of Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) on Green Perilla(Perilla frutescens var. japonica Hara) (잎들깨에서 차먼지응애의 발생특성)

  • Seo, Youn-Kyung;Ann, Seoung-Won;Choi, Yong-Seok
    • Korean journal of applied entomology
    • /
    • v.59 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • The populations of Polyphagostarsonemus latus (Acari: Tarsonemidae) peaked two times on green perilla grown in greenhouses of Geumsan-Gun, Chungchungnamdo. The first peak of P. latus was in the middle of June, after it was first detected in late May. The population of P. latus peaked for the second time in mid July as its density stared rapidly increasing in early July. The application of chemical pesticides and eco-friendly agricultural materials, the two management methods used to control P. latus on green perilla, did not alter the occurrence patterns of P. latus; population size of the mite was much larger in greenhouses using chemical pesticides than in the ones using eco-friendly agricultural materials. This difference might be cuased by continuity of the management methods. Chemical control of P. latus should be limited owing to pesticide residue. The highest density of P. latus on green perilla plants was observed after 25 days after inoculation. The density was the highest in mid-aged leaves (e.g., the largest leaves) and the lowest in newly developed leaves (e.g., smallest leaves). However, there was no significant (P > 0.05) correlation between leaf size and density of P. latus. These results indicate that leaf size (e.g., leaf age) did not affect the occurrence of P. latus. Thus, any leaf of a green perilla plant is available as a sample unit for P. latus.

Characterization of broad bean wilt virus 2 isolated from Perilla frutescens in Korea (국내 잎들깨에서 발생한 잠두위조바이러스2의 특성 구명)

  • Hyun-Sun Kim;Hee-Seong Byun;You-Ji Choi;Hyun-Yong Choi;Jang-Kyun Seo;Hong-Soo Choi;Bong-Choon Lee;Mikyeong Kim;Hae-Ryun Kwak
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Broad bean wilt virus 2 (BBWV2) is a species in the genus Fabavirus and family Secoviridae, which is transmitted by aphids and has a wide host range. The BBWV2 genome is composed of two single-stranded, positive-sense RNAs, RNA-1 and RNA-2. The representative symptoms of BBWV2 are mosaic, mottle, vein clearing, wilt, and stunting on leaves, and these symptoms cause economic damage to various crops. In 2019, Perilla fructescens leaves with mosaic and yellowing symptoms were found in Geumsan, South Korea. Reverse-transcription polymerase chain reaction (RT-PCR) was performed with specific primers for 10 reported viruses, including BBWV2, to identify the causal virus, and the results were positive for BBWV2. To characterize a BBWV2 isolate (BBWV2-GS-PF) from symptomatic P. fructescens, genetic analysis and pathogenicity tests were performed. The complete genomic sequences of RNA-1 and RNA-2 of BBWV2-GS-PF were phylogenetically distant to the previously reported BBWV2 isolates, with relatively low nucleotide sequence similarities of 76-80%. In the pathogenicity test, unlike most BBWV2 isolates with mild mosaic or mosaic symptoms in peppers, the BBWV2-GS-PF isolate showed typical ring spot symptoms. Considering these results, the BBWV2-GS-PF isolate from P. fructescens could be classified as a new strain of BBWV2.

Investigation of Microbial Contamination Levels of Leafy Greens and Its Distributing Conditions at Different Time - Focused on Perilla leaf and Lettuce - (시기별 엽채류의 미생물 오염도와 유통 조건 조사 - 들깻잎과 상추를 중심으로 -)

  • Kim, Won-Il;Jung, Hyang-Mi;Kim, Se-Ri;Park, Kyeong-Hun;Kim, Byung-Seok;Yun, Jong-Chul;Ryu, Kyoung-Yul
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.277-284
    • /
    • 2012
  • The objective of this study was to investigate and evaluate microbial contamination levels of leafy greens (perilla leaf and lettuce) and its distributing conditions at different seasons (Feb, May, Aug, and Nov of the year 2011) in order to provide insight into any potential health hazards associated with consumption of these commodities. Leafy greens were collected from a farm located in Geumsan, Chungnam and wholesale markets (WM) and traditional markets (TM) located in Suwon. At the same time, temperature and relative humidity fluctuations experienced by the leafy greens during distribution from the farm to the distribution center were measured by a data logger. The contamination levels of perilla leaf and lettuce were determined by analyzing total plate count. Coliform groups, Bacillus cereus, Escherichia coli, Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes and Staphylococcus aureus were determined. The contamination levels of total aerobic bacteria, coliform groups and B. cereus in both vegetables sampled during May and August found to be higher than those sampled during February and November. E. coli O157:H7, Salmonella spp., L. monocytogenes were not detected in the vegetables analyzed in this study. There were no significant trends between samples at WM and TM in the contamination levels. Relative humidity of vegetables distributed from the farm to the distribution center showed over 90% during distribution regardless of measured seasons. In the case of background microflora on leafy greens, the density was significantly increased at 20, 30 and $37^{\circ}C$ during storage of 24h. E. coli O157:H7 and B. cereus inoculated on the leaves also showed similar increases in the storage tests. The microbial contamination levels determined in this study may be used as the fundamental data for microbial risk assessment.