• 제목/요약/키워드: Gesture-Based User Interface

Search Result 107, Processing Time 0.027 seconds

Gesture-Based NUI 3D Rehabilitation System Using Kinect and Unity3D (Kinect와 Unity3D를 이용하여 제스처 기반 NUI를 적용한 3D 재활 치료 시스템)

  • Son, Hyun-Ho;Koo, Dong-Hyeon;Jeong, Sang-Cheol;Lee, Young-Man;Lee, Sang-Min;Lee, DoHoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.1142-1144
    • /
    • 2014
  • 본 논문에서는 뇌졸중, 치매 등 재활치료가 필요한 환자를 대상으로 하는 재활 프로그램을 Kinect와 Unity3D를 이용하여 구현하고, 이를 제어하기 위한 효과적인 제스처 기반 Natural User Interface를 적용하였다. 이는 동작 인식을 위해 Kinect 주변에 가까이 있기 어려운 프로그램 사용 환경을 원거리 조작이 가능케 하여 더욱 편하게 조작할 수 있게 하며, 직관적이고 단순한 제스처를 정의함으로써 가정에서도 손쉽게 사용할 수 있게 하였다.

Augmented Reality Game Interface Using Hand Gestures Tracking (사용자 손동작 추적에 기반한 증강현실 게임 인터페이스)

  • Yoon, Jong-Hyun;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.6 no.2
    • /
    • pp.3-12
    • /
    • 2006
  • Recently, Many 3D augmented reality games that provide strengthened immersive have appeared in the 3D game environment. In this article, we describe a barehanded interaction method based on human hand gestures for augmented reality games. First, feature points are extracted from input video streams. Point features are tracked and motion of moving objects are computed. The shape of the motion trajectories are used to determine whether the motion is intended gestures. A long smooth trajectory toward one of virtual objects or menus is classified as an intended gesture and the corresponding action is invoked. To prove the validity of the proposed method, we implemented two simple augmented reality applications: a gesture-based music player and a virtual basketball game. In the music player, several menu icons are displayed on the top of the screen and an user can activate a menu by hand gestures. In the virtual basketball game, a virtual ball is bouncing in a virtual cube space and the real video stream is shown in the background. An user can hit the virtual ball with his hand gestures. From the experiments for three untrained users, it is shown that the accuracy of menu activation according to the intended gestures is 94% for normal speed gestures and 84% for fast and abrupt gestures.

  • PDF

A Driving Information Centric Information Processing Technology Development Based on Image Processing (영상처리 기반의 운전자 중심 정보처리 기술 개발)

  • Yang, Seung-Hoon;Hong, Gwang-Soo;Kim, Byung-Gyu
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.31-37
    • /
    • 2012
  • Today, the core technology of an automobile is becoming to IT-based convergence system technology. To cope with many kinds of situations and provide the convenience for drivers, various IT technologies are being integrated into automobile system. In this paper, we propose an convergence system, which is called Augmented Driving System (ADS), to provide high safety and convenience of drivers based on image information processing. From imaging sensor, the image data is acquisited and processed to give distance from the front car, lane, and traffic sign panel by the proposed methods. Also, a converged interface technology with camera for gesture recognition and microphone for speech recognition is provided. Based on this kind of system technology, car accident will be decreased although drivers could not recognize the dangerous situations, since the system can recognize situation or user context to give attention to the front view. Through the experiments, the proposed methods achieved over 90% of recognition in terms of traffic sign detection, lane detection, and distance measure from the front car.

Experience Design Guideline for Smart Car Interface (스마트카의 인터페이스를 위한 경험 디자인 가이드라인)

  • Yoo, Hoon Sik;Ju, Da Young
    • Design Convergence Study
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2016
  • Due to the development of communication technology and expansion of Intelligent Transport System (ITS), the car is changing from a simple mechanical device to second living space which has comprehensive convenience function and is evolved into the platform which is playing as an interface for this role. As the interface area to provide various information to the passenger is being expanded, the research importance about smart car based user experience is rising. This study has a research objective to propose the guidelines regarding the smart car user experience elements. In order to conduct this study, smart car user experience elements were defined as function, interaction, and surface and through the discussions of UX/UI experts, 8 representative techniques, 14 representative techniques, and 8 locations of the glass windows were specified for each element. Following, the smart car users' priorities of the experience elements, which were defined through targeting 100 drivers, were analyzed in the form of questionnaire survey. The analysis showed that the users' priorities in applying the main techniques were in the order of safety, distance, and sensibility. The priorities of the production method were in the order of voice recognition, touch, gesture, physical button, and eye tracking. Furthermore, regarding the glass window locations, users prioritized the front of the driver's seat to the back. According to the demographic analysis on gender, there were no significant differences except for two functions. Therefore this showed that the guidelines of male and female can be commonly applied. Through user requirement analysis about individual elements, this study provides the guides about the requirement in each element to be applied to commercialized product with priority.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

An Implementation of Dynamic Gesture Recognizer Based on WPS and Data Glove (WPS와 장갑 장치 기반의 동적 제스처 인식기의 구현)

  • Kim, Jung-Hyun;Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.561-568
    • /
    • 2006
  • WPS(Wearable Personal Station) for next generation PC can define as a core terminal of 'Ubiquitous Computing' that include information processing and network function and overcome spatial limitation in acquisition of new information. As a way to acquire significant dynamic gesture data of user from haptic devices, traditional gesture recognizer based on desktop-PC using wire communication module has several restrictions such as conditionality on space, complexity between transmission mediums(cable elements), limitation of motion and incommodiousness on use. Accordingly, in this paper, in order to overcome these problems, we implement hand gesture recognition system using fuzzy algorithm and neural network for Post PC(the embedded-ubiquitous environment using blue-tooth module and WPS). Also, we propose most efficient and reasonable hand gesture recognition interface for Post PC through evaluation and analysis of performance about each gesture recognition system. The proposed gesture recognition system consists of three modules: 1) gesture input module that processes motion of dynamic hand to input data 2) Relational Database Management System(hereafter, RDBMS) module to segment significant gestures from input data and 3) 2 each different recognition modulo: fuzzy max-min and neural network recognition module to recognize significant gesture of continuous / dynamic gestures. Experimental result shows the average recognition rate of 98.8% in fuzzy min-nin module and 96.7% in neural network recognition module about significantly dynamic gestures.

Building Plan Research of Meeting System based on Multi-Touch Interface (멀티터치 인터페이스 회의시스템 구축 방안 연구)

  • Jang, Suk-Joo;Bak, Seon-Hui;Choi, Tae-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.255-261
    • /
    • 2014
  • The development of the IT industry brought major changes in modern society. That change applies in all areas, that life is more and more convenient. work is more efficient, handling quickly and that make convenient life. Interface is a big factor in the center of these changes. that is more and more development and there is currently using NUI technology. NUI technology is not necessary that discrete input device. and that use natural behavior like touch, gesture. among them, the smart phone device is a representative of appllying the NUI technology. smart phone as well as NUI technology applies kiosk, big table and that use Various fields, such as culture, defense, and advertising industries. In this research, development multi-touch table based multi-touch meeting system. and proposal efficient system possible improvements about Existing meeting system.

NUI/NUX framework based on intuitive hand motion (직관적인 핸드 모션에 기반한 NUI/NUX 프레임워크)

  • Lee, Gwanghyung;Shin, Dongkyoo;Shin, Dongil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.11-19
    • /
    • 2014
  • The natural user interface/experience (NUI/NUX) is used for the natural motion interface without using device or tool such as mice, keyboards, pens and markers. Up to now, typical motion recognition methods used markers to receive coordinate input values of each marker as relative data and to store each coordinate value into the database. But, to recognize accurate motion, more markers are needed and much time is taken in attaching makers and processing the data. Also, as NUI/NUX framework being developed except for the most important intuition, problems for use arise and are forced for users to learn many NUI/NUX framework usages. To compensate for this problem in this paper, we didn't use markers and implemented for anyone to handle it. Also, we designed multi-modal NUI/NUX framework controlling voice, body motion, and facial expression simultaneously, and proposed a new algorithm of mouse operation by recognizing intuitive hand gesture and mapping it on the monitor. We implement it for user to handle the "hand mouse" operation easily and intuitively.

Image Processing Based Virtual Reality Input Method using Gesture (영상처리 기반의 제스처를 이용한 가상현실 입력기)

  • Hong, Dong-Gyun;Cheon, Mi-Hyeon;Lee, Donghwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.129-137
    • /
    • 2019
  • Ubiquitous computing technology is emerging as information technology advances. In line with this, a number of studies are being carried out to increase device miniaturization and user convenience. Some of the proposed devices are user-friendly and uncomfortable with hand-held operation. To address these inconveniences, this paper proposed a virtual button that could be used in watching television. When watching a video on television, a camera is installed at the top of the TV, using the fact that the user watches the video from the front, so that the camera takes a picture of the top of the head. Extract the background and hand area separately from the filmed image, extract the outline to the extracted hand area, and detect the tip point of the finger. Detection of the end point of the finger produces a virtual button interface at the top of the image being filmed in front, and the button activates when the end point of the detected finger becomes a pointer and is located inside the button.

Study on Signal Processing Method for Extracting Hand-Gesture Signals Using Sensors Measuring Surrounding Electric Field Disturbance (주변 전기장 측정센서를 이용한 손동작 신호 검출을 위한 신호처리시스템 연구)

  • Cheon, Woo Young;Kim, Young Chul
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.26-32
    • /
    • 2017
  • In this paper, we implement a signal-detecting electric circuit based LED lighting control system which is essential in NUI technology using EPIC converting surrounding earth electric field disturbance signals to electric potential signals. We used signal-detecting electric circuits which was developed to extract individual signal for each EPIC sensor while conventional EPIC-based development equipments provide limited forms of signals. The signals extracted from our developed circuit contributed to better performance as well as flexiblity in processes of feature extracting stage and pattern recognition stage. We designed a system which can control the brightness and on/off of LED lights with four hand gestures in order to justify its applicability to real application systems. We obtained faster pattern classification speed not only by developing an instruction system, but also by using interface control signals.